Advertisements
Advertisements
Question
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Solution
\[\text{ Let I} = \int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
\[\text{ Let } \tan^{- 1} x = t\]
\[ \Rightarrow \frac{dx}{1 + x^2} = dt\]
\[ \therefore I = \int e^t dt\]
\[ = e^t + C\]
\[ = e^{{tan}^{- 1}} x + C\]
APPEARS IN
RELATED QUESTIONS
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integrals:
Evaluate the following integral:
Write a value of
Evaluate:
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`