Advertisements
Advertisements
Question
Solution
` Note: "Here, we are considering "log x as log_e x`
\[\text{Let I} = \int\frac{\sec x}{\log \left( \sec x + \tan x \right)}dx\]
\[\text{Putting} \log \left( \sec x + \tan x \right) = t\]
\[ \Rightarrow \frac{\sec x \tan x + \sec^2 x}{\sec x + \tan x} = \frac{dt}{dx}\]
\[ \Rightarrow \sec x\frac{\left( \sec x + \tan x \right)}{\sec x + \tan x} = \frac{dt}{dx}\]
\[ \Rightarrow \text{sec x dx} = dt\]
\[ \therefore I = \int\frac{dt}{t}\]
\[ = \text{log}\left| t \right| + C\]
\[ = \text{log}\left| \text{log }\left( \sec x + \tan x \right) \right| + C\]
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^3dx/(9+x^2)`
` ∫ cot^3 x "cosec"^2 x dx `
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate:
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`