English

∫ 2 X + 1 ( X + 2 ) ( X − 3 ) 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} dx\]
Sum

Solution

We have,

\[I = \int\frac{\left( 2x + 1 \right) dx}{\left( x + 2 \right) \left( x - 3 \right)^2}\]

\[\text{Let }\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} = \frac{A}{x + 2} + \frac{B}{x - 3} + \frac{C}{\left( x - 3 \right)^2}\]

\[ \Rightarrow \frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} = \frac{A \left( x - 3 \right)^2 + B \left( x + 2 \right) \left( x - 3 \right) + C \left( x + 2 \right)}{\left( x + 2 \right) \left( x - 3 \right)^2}\]

\[ \Rightarrow 2x + 1 = A \left( x^2 - 6x + 9 \right) + B \left( x^2 - x - 6 \right) + C \left( x + 2 \right)\]

\[ \Rightarrow 2x + 1 = \left( A + B \right) x^2 + \left( - 6A - B + C \right) x + \left( 9A - 6B + 2C \right)\]

Equating the coefficients of like terms

\[A + B = 0 ..................(1)\]

\[ - 6A - B + C = 2 ....................(2)\]

\[9A - 6B + 2C = 1 .......................(3)\]

Solving (1), (2) and (3), we get

\[A = - \frac{3}{25}, B = \frac{3}{25}\text{ and }C = \frac{7}{5}\]

\[ \therefore \frac{\left( 2x + 1 \right) dx}{\left( x + 2 \right) \left( x - 3 \right)^2} = - \frac{3}{25 \left( x + 2 \right)} + \frac{3}{25 \left( x - 3 \right)} + \frac{7}{5 \left( x - 3 \right)^2}\]

\[ \Rightarrow I = - \frac{3}{25}\int\frac{dx}{x + 2} + \frac{3}{25}\int\frac{dx}{x - 3} + \frac{7}{5}\int \left( x - 3 \right)^{- 2} dx\]

\[ = - \frac{3}{25} \log \left| x + 2 \right| + \frac{3}{25} \log \left| x - 3 \right| + \frac{7}{5}\left[ \frac{\left( x - 3 \right)^{- 1}}{- 1} \right] + C\]

\[ = - \frac{3}{25}\log \left| x + 2 \right| + \frac{3}{25} \log \left| x - 3 \right| - \frac{7}{5 \left( x - 3 \right)} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 28 | Page 177

RELATED QUESTIONS

`∫   x    \sqrt{x + 2}     dx ` 

Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{1}{e^x + 1} dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{10 x^9 + {10}^x \log_e 10}{{10}^x + x^{10}} dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

\[\int\frac{1}{\cos 3x - \cos x} dx\]

\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


\[\int e^{2x} \text{ sin x cos x dx }\]

Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

Evaluate the following integral:

\[\int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx\]

Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`


Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×