Advertisements
Advertisements
Question
Solution
We have,
\[I = \int\frac{\left( 2x + 1 \right) dx}{\left( x + 2 \right) \left( x - 3 \right)^2}\]
\[\text{Let }\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} = \frac{A}{x + 2} + \frac{B}{x - 3} + \frac{C}{\left( x - 3 \right)^2}\]
\[ \Rightarrow \frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} = \frac{A \left( x - 3 \right)^2 + B \left( x + 2 \right) \left( x - 3 \right) + C \left( x + 2 \right)}{\left( x + 2 \right) \left( x - 3 \right)^2}\]
\[ \Rightarrow 2x + 1 = A \left( x^2 - 6x + 9 \right) + B \left( x^2 - x - 6 \right) + C \left( x + 2 \right)\]
\[ \Rightarrow 2x + 1 = \left( A + B \right) x^2 + \left( - 6A - B + C \right) x + \left( 9A - 6B + 2C \right)\]
Equating the coefficients of like terms
\[A + B = 0 ..................(1)\]
\[ - 6A - B + C = 2 ....................(2)\]
\[9A - 6B + 2C = 1 .......................(3)\]
Solving (1), (2) and (3), we get
\[A = - \frac{3}{25}, B = \frac{3}{25}\text{ and }C = \frac{7}{5}\]
\[ \therefore \frac{\left( 2x + 1 \right) dx}{\left( x + 2 \right) \left( x - 3 \right)^2} = - \frac{3}{25 \left( x + 2 \right)} + \frac{3}{25 \left( x - 3 \right)} + \frac{7}{5 \left( x - 3 \right)^2}\]
\[ \Rightarrow I = - \frac{3}{25}\int\frac{dx}{x + 2} + \frac{3}{25}\int\frac{dx}{x - 3} + \frac{7}{5}\int \left( x - 3 \right)^{- 2} dx\]
\[ = - \frac{3}{25} \log \left| x + 2 \right| + \frac{3}{25} \log \left| x - 3 \right| + \frac{7}{5}\left[ \frac{\left( x - 3 \right)^{- 1}}{- 1} \right] + C\]
\[ = - \frac{3}{25}\log \left| x + 2 \right| + \frac{3}{25} \log \left| x - 3 \right| - \frac{7}{5 \left( x - 3 \right)} + C\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integrals:
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`