English

Evaluate the Following Integrals: ∫ 1 ( X 2 + 2 X + 10 ) 2 D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 

Sum

Solution

\[\text{Let I }= \int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

\[ = \int\frac{1}{\left[ \left( x + 1 \right)^2 + 3^2 \right]^2}dx\]

\[ \text{Let x + 1 }= 3\tan\theta\]

\[ \text{On differentiating both sides, we get}\]

\[ dx = 3 \sec^2 \theta \text{ dθ }\]

\[ \therefore I = \int\frac{1}{\left[ 3^2 \tan^2 \theta + 3^2 \right]^2}3 \sec^2  θ    \text{ dθ }\]

\[ = \frac{1}{27}\int\frac{\sec^2 \theta}{\sec^4 \theta}d\theta\]

\[ = \frac{1}{27}\int\frac{1}{\sec^2 \theta}d\theta\]

`= {1}/{27}\int \text{ cos}^2  θ  \text{ dθ }`

 

` = {1}/{54}\int\left( 1 + cos2θ  ) dθ `

\[ = \frac{1}{54}\left( \theta + \frac{\sin2\theta}{2} \right) + c\]

\[ = \frac{1}{54}\left( \theta + \frac{\tan\theta}{1 + \tan^2 \theta} \right) + c\]

\[ = \frac{1}{54}\left( \tan^{- 1} \frac{x + 1}{3} + \frac{\tan\left( \tan^{- 1} \frac{x + 1}{3} \right)}{1 + \tan^2 \left( \tan^{- 1} \frac{x + 1}{3} \right)} \right) + c\]

\[ = \frac{1}{54}\left( \tan^{- 1} \frac{x + 1}{3} + \frac{\frac{x + 1}{3}}{1 + \left( \frac{x + 1}{3} \right)^2} \right) + c\]

\[ = \frac{1}{54}\left( \tan^{- 1} \frac{x + 1}{3} + \frac{\frac{x + 1}{3}}{\frac{x^2 + 2x + 10}{9}} \right) + c\]

\[ = \frac{1}{54}\left( \tan^{- 1} \frac{x + 1}{3} + \frac{3\left( x + 1 \right)}{x^2 + 2x + 10} \right) + c\]

\[Hence, \int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx = \frac{1}{54}\left( \tan^{- 1} \frac{x + 1}{3} + \frac{3\left( x + 1 \right)}{x^2 + 2x + 10} \right) + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.13 [Page 79]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.13 | Q 5 | Page 79

RELATED QUESTIONS

Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{10 x^9 + {10}^x \log_e 10}{{10}^x + x^{10}} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

`  ∫    {1} / {cos x  + "cosec x" } dx  `

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


\[\int e^{2x} \text{ sin x cos x dx }\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]

\[\int\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} dx\]

Evaluate the following integral:

\[\int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx\]

\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

Write a value of

\[\int\frac{\left( \log x \right)^n}{x} \text{ dx }\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate:  \[\int 2^x  \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate:  \[\int\frac{2}{1 - \cos2x}\text{ dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×