हिंदी

Evaluate the Following Integrals: ∫ ( X + 3 ) √ 3 − 4 X − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]
योग

उत्तर

\[Let I = \int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]
\[\text{ We  express  x + 3 }= A\left( \frac{d}{d x}\left( 3 - 4x - x^2 \right) \right) + B\]
\[x + 3 = A( - 4 - 2x) + B\]
\[\text{Equating the coefficients of x and constants, we get}\]
\[1 = - 2A \text{ and 3 } = - 4A + B\]
\[or A = - \frac{1}{2} \text{ and B} = 1 \]
\[ \therefore I = \int\left( - \frac{1}{2}\left( - 4 - 2x \right) + 1 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]
\[ = - \frac{1}{2}\int\left( - 4 - 2x \right)\sqrt{3 - 4x - x^2} \text{  dx }+ \int\sqrt{3 - 4x - x^2} \text{  dx }\]
\[ = - \frac{1}{2} I_1 + I_2 . . . (1)\]
\[\text{ Now, }I_1 = \int\left( - 4 - 2x \right)\sqrt{3 - 4x - x^2} \text{  dx }\]
\[\text{ Let 3 }- 4x - x^2 = u\]
\[ \text{On differentiating both sides, we get}\]
\[ \left( - 4 - 2x \right)dx = du\]
\[ \therefore I_1 = \int\sqrt{u}du\]
\[ = \frac{2}{3} u^\frac{3}{2} + c_1 \]
\[ = \frac{2}{3} \left( 3 - 4x - x^2 \right)^\frac{3}{2} + c_1 . . . (2)\]
\[\text{ And, I_2 }= \int\sqrt{3 - 4x - x^2} \text{  dx }\]
\[ = \int\sqrt{3 + 4 - 4 - 4x - x^2} \text{  dx }\]
\[ = \int\sqrt{\left( \sqrt{7} \right)^2 - \left( x + 2 \right)^2} \text{  dx }\]
\[ \text{ Let} \left( x + 2 \right) = u\]
\[ \text{On differentiating both sides, we get}\]
\[ dx = du\]
\[ \therefore I_2 = \int\sqrt{\left( \sqrt{7} \right)^2 - \left( u \right)^2} du\]
\[ = \frac{u}{2}\sqrt{\left( \sqrt{7} \right)^2 - \left( u \right)^2} + \frac{1}{2} \left( \sqrt{7} \right)^2 \sin^{- 1} \left( \frac{u}{\sqrt{7}} \right) + c_2 \]
\[ = \frac{x + 2}{2}\sqrt{7 - \left( x + 2 \right)^2} + \frac{7}{2} \sin^{- 1} \left( \frac{x + 2}{\sqrt{7}} \right) + c_2 \]
\[ = \frac{x + 2}{2}\sqrt{3 - 4x - x^2} + \frac{7}{2} \sin^{- 1} \left( \frac{x + 2}{\sqrt{7}} \right) + c_2 . . . (3)\]
\[\text{ From (1), (2) and (3), we get }\]
\[ \therefore I = - \frac{1}{2}\left( \frac{2}{3} \left( 3 - 4x - x^2 \right)^\frac{3}{2} + c_1 \right) + \left( \frac{x + 2}{2}\sqrt{3 - 4x - x^2} + \frac{7}{2} \sin^{- 1} \left( \frac{x + 2}{\sqrt{7}} \right) + c_2 \right)\]
\[ = - \frac{1}{3} \left( 3 - 4x - x^2 \right)^\frac{3}{2} + \frac{x + 2}{2}\sqrt{3 - 4x - x^2} + \frac{7}{2} \sin^{- 1} \left( \frac{x + 2}{\sqrt{7}} \right) + c\]
\[\text{ Hence,} \int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }= - \frac{1}{3} \left( 3 - 4x - x^2 \right)^\frac{3}{2} + \frac{x + 2}{2}\sqrt{3 - 4x - x^2} + \frac{7}{2} \sin^{- 1} \left( \frac{x + 2}{\sqrt{7}} \right) + c\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.29 [पृष्ठ १५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.29 | Q 12 | पृष्ठ १५९

संबंधित प्रश्न

Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


`∫   x    \sqrt{x + 2}     dx ` 

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{1}{\sin x \cos^2 x} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 + x^2 - 2}dx\]

Write a value of

\[\int\frac{\left( \log x \right)^n}{x} \text{ dx }\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:  \[\int 2^x  \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×