Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[I = \int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx\]
\[\text{Let }\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} = \frac{A}{x - a} + \frac{B}{x - b} + \frac{C}{x - c}\]
\[ \Rightarrow a x^2 + bx + c = A\left( x - b \right) \left( x - c \right) + B \left( x - c \right)\left( x - a \right) + C\left( x - a \right) \left( x - b \right)\]
\[ \Rightarrow a x^2 + bx + c = A\left[ x^2 - \left( b + c \right)x + bc \right] + B\left[ x^2 - \left( c + a \right)x + ca \right] + C\left[ x^2 - \left( a + b \right)x + ab \right]\]
\[ \Rightarrow a x^2 + bx + c = \left( A + B + C \right) x^2 - \left[ A\left( b + c \right) + B\left( c + a \right) + C\left( a + b \right) \right]x + Abc + Bca + Cab\]
Equating the coefficients on both sides, we get
\[a = A + B + C ...............(1)\]
\[b = - \left[ A\left( b + c \right) + B\left( c + a \right) + C\left( a + b \right) \right] ..................(2)\]
\[c = Abc + Bca + Cab .................(3)\]
Solving (1), (2) and (3), we get
\[A = \frac{a^3 + ab + c}{\left( a - b \right)\left( a - c \right)}\]
\[B = \frac{a b^2 + b^2 + c}{\left( b - a \right)\left( b - c \right)}\]
\[C = \frac{a c^2 + bc + c}{\left( c - a \right)\left( c - b \right)}\]
\[ \therefore I = \int\left[ \frac{a^3 + ab + c}{\left( a - b \right)\left( a - c \right)} \times \frac{1}{x - a} + \frac{a b^2 + b^2 + c}{\left( b - a \right)\left( b - c \right)} \times \frac{1}{x - b} + \frac{a c^2 + bc + c}{\left( c - a \right)\left( c - b \right)} \times \frac{1}{x - c} \right] dx\]
\[ = \frac{a^3 + ab + c}{\left( a - b \right)\left( a - c \right)}\log \left| x - a \right| + \frac{a b^2 + b^2 + c}{\left( b - a \right)\left( b - c \right)}\log \left| x - b \right| + \frac{a c^2 + bc + c}{\left( c - a \right)\left( c - b \right)}\log \left| x - c \right| + K\]
APPEARS IN
संबंधित प्रश्न
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate:
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)