हिंदी

∫ a X 2 + B X + C ( X − a ) ( X − B ) ( X − C ) D X , Where A, B, C Are Distinct - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]
योग

उत्तर

We have,

\[I = \int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx\]

\[\text{Let }\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} = \frac{A}{x - a} + \frac{B}{x - b} + \frac{C}{x - c}\]

\[ \Rightarrow a x^2 + bx + c = A\left( x - b \right) \left( x - c \right) + B \left( x - c \right)\left( x - a \right) + C\left( x - a \right) \left( x - b \right)\]

\[ \Rightarrow a x^2 + bx + c = A\left[ x^2 - \left( b + c \right)x + bc \right] + B\left[ x^2 - \left( c + a \right)x + ca \right] + C\left[ x^2 - \left( a + b \right)x + ab \right]\]

\[ \Rightarrow a x^2 + bx + c = \left( A + B + C \right) x^2 - \left[ A\left( b + c \right) + B\left( c + a \right) + C\left( a + b \right) \right]x + Abc + Bca + Cab\]

Equating the coefficients on both sides, we get

\[a = A + B + C ...............(1)\]

\[b = - \left[ A\left( b + c \right) + B\left( c + a \right) + C\left( a + b \right) \right] ..................(2)\]

\[c = Abc + Bca + Cab .................(3)\]

Solving (1), (2) and (3), we get

\[A = \frac{a^3 + ab + c}{\left( a - b \right)\left( a - c \right)}\]

\[B = \frac{a b^2 + b^2 + c}{\left( b - a \right)\left( b - c \right)}\]

\[C = \frac{a c^2 + bc + c}{\left( c - a \right)\left( c - b \right)}\]

\[ \therefore I = \int\left[ \frac{a^3 + ab + c}{\left( a - b \right)\left( a - c \right)} \times \frac{1}{x - a} + \frac{a b^2 + b^2 + c}{\left( b - a \right)\left( b - c \right)} \times \frac{1}{x - b} + \frac{a c^2 + bc + c}{\left( c - a \right)\left( c - b \right)} \times \frac{1}{x - c} \right] dx\]

\[ = \frac{a^3 + ab + c}{\left( a - b \right)\left( a - c \right)}\log \left| x - a \right| + \frac{a b^2 + b^2 + c}{\left( b - a \right)\left( b - c \right)}\log \left| x - b \right| + \frac{a c^2 + bc + c}{\left( c - a \right)\left( c - b \right)}\log \left| x - c \right| + K\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 15 | पृष्ठ १७६

संबंधित प्रश्न

Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\frac{x}{\sqrt{x + 4}} dx\]

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{1}{x \log x} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]


\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

Evaluate the following integral:

\[\int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 + x^2 - 2}dx\]

\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate:  \[\int\frac{2}{1 - \cos2x}\text{ dx }\]


Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]

Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×