हिंदी

∫ Cos X ( 1 − Sin X ) ( 2 − Sin X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]
योग

उत्तर

We have,
\[I = \int \frac{\cos x dx}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)}\]
\[\text{Putting }\sin x = t\]
\[ \Rightarrow \cos\ x\ dx = dt\]
\[ \therefore I = \int\frac{dt}{\left( 1 - t \right) \left( 2 - t \right)}\]
\[ = \int\frac{dt}{\left( t - 1 \right) \left( t - 2 \right)}\]
\[\text{Let }\frac{1}{\left( t - 1 \right) \left( t - 2 \right)} = \frac{A}{t - 1} + \frac{B}{t - 2}\]
\[ \Rightarrow \frac{1}{\left( t - 1 \right) \left( t - 2 \right)} = \frac{A\left( t - 2 \right) + B\left( t - 1 \right)}{\left( t - 1 \right) \left( t - 2 \right)}\]
\[ \Rightarrow 1 = A\left( t - 2 \right) + B\left( t - 1 \right)\]
\[\text{Putting }t - 1 = 0\]
\[ \Rightarrow t = 1\]
\[ \therefore 1 = A\left( 1 - 2 \right) + B \times 0\]
\[ \Rightarrow A = - 1\]
\[\text{Putting }t - 2 = 0\]
\[ \Rightarrow t = 2\]
\[ \therefore 1 = A \times 0 + B\left( 2 - 1 \right)\]
\[ \Rightarrow B = 1\]
\[ \therefore I = \int\frac{- dt}{t - 1} + \int\frac{dt}{t - 2}\]
\[ = - \log \left| t - 1 \right| + \log \left| t - 2 \right| + C\]
\[ = \log\left| \frac{t - 2}{t - 1} \right| + C\]
\[ = \log \left| \frac{\sin x - 2}{\sin x - 1} \right| + C\]
\[ = \log \left| \frac{2 - \sin x}{1 - \sin x} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 51 | पृष्ठ १७७

संबंधित प्रश्न

Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


\[\int\frac{x}{\sqrt{x + 4}} dx\]

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{1}{x \log x} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

Evaluate the following integral:

\[\int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


Evaluate the following integral:

\[\int\frac{x^2}{x^4 + x^2 - 2}dx\]

\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Write a value of

\[\int\frac{\left( \log x \right)^n}{x} \text{ dx }\]

Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×