हिंदी

∫ X √ X + 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{\sqrt{x + 4}} dx\]
योग

उत्तर

\[\int\frac{x}{\sqrt{x + 4}}dx\]
\[ = \int\left( \frac{x + 4 - 4}{\sqrt{x + 4}} \right)dx\]
\[ = \int\left( \sqrt{x + 4} - \frac{4}{\sqrt{x + 4}} \right)dx\]
\[ = \int \left( x + 4 \right)^\frac{1}{2} dx - 4\int \left( x + 4 \right)^{- \frac{1}{2}} dx\]


\[ = \frac{\left( x + 4 \right)^\frac{1}{2} + 1}{\frac{1}{2} + 1} - 4\frac{\left[ x + 4 \right]^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} + C\]
\[ = \frac{2}{3} \left( x + 4 \right)^\frac{3}{2} - 8 \left( x + 4 \right)^\frac{1}{2} + C\]
\[ = \left( x + 4 \right)^\frac{1}{2} \left[ \frac{2}{3}\left( x + 4 \right) - 8 \right] + C\]
\[ = \left( x + 4 \right)^\frac{1}{2} \left[ \frac{2x + 8 - 24}{3} \right] + C\]
\[ = \left( x + 4 \right)^\frac{1}{2} \left[ \frac{2x - 16}{3} \right] + C\]
\[ = \frac{2}{3}\left( x - 8 \right)\sqrt{x + 4} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.05 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.05 | Q 7 | पृष्ठ ३३

संबंधित प्रश्न

\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{1}{x \log x} dx\]

\[\int\frac{1}{e^x + 1} dx\]

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{10 x^9 + {10}^x \log_e 10}{{10}^x + x^{10}} dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

\[\int\frac{1}{\cos 3x - \cos x} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

Evaluate the following integral:

\[\int\frac{1}{x\left( x^3 + 8 \right)}dx\]

 


\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate:  \[\int 2^x  \text{ dx }\]


Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×