हिंदी

∫ 2 − 3 X √ 1 + 3 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]
योग

उत्तर

\[ \text{Let I} = \int\left( \frac{2 - 3x}{\sqrt{1 + 3x}} \right)dx\]

Putting 1 + 3x = t
⇒ 3x = t – 1

\[\text{and}\ 3dx = dt\]
\[ \Rightarrow dx = \frac{dt}{3}\]

\[\therefore I = \int\left( \frac{2 - \left( t - 1 \right)}{\sqrt{t}} \right)dt\]
\[ = \int\left( \frac{3 - t}{\sqrt{t}} \right)dt\]
\[ = \int\left( 3 t^{- \frac{1}{2}} - t^\frac{1}{2} \right)dt\]
\[ = 3\int t^{- \frac{1}{2}} dt - \int t^\frac{1}{2} dt\]
\[ = 3\left[ \frac{t^\frac{- 1}{2} + 1}{- \frac{1}{2} + 1} \right] - \left[ \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + C\]
\[ = 6\sqrt{t} - \frac{2}{3} t^\frac{3}{2} + C\]
\[ = 2\sqrt{t} \left( 3 - \frac{t}{3} \right) + C\]
\[ = 2\sqrt{t}\left( \frac{9 - t}{3} \right) + C \left[ \because t = 1 + 3x \right]\]
\[ = \frac{2}{3}\sqrt{1 + 3x} \left\{ \frac{9 - \left( 1 + 3x \right)}{3} \right\} + C\]
\[ = \frac{2}{3 \times 3}\sqrt{1 + 3x} \left( 8 - 3x \right) + C\]
\[ = \frac{2}{9}\left( 8 - 3x \right) \sqrt{1 + 3x} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.05 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.05 | Q 8 | पृष्ठ ३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int\cos\sqrt{x}\ dx\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×