हिंदी

∫ 5 X + 3 √ X 2 + 4 X + 10 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]
योग

उत्तर

\[\text{ Let I }= \int\frac{\left( 5x + 3 \right) dx}{\sqrt{x^2 + 4x + 10}}\]
\[\text{ Consider, }\]
\[5x + 3 = A \frac{d}{dx} \left( x^2 + 4x + 10 \right) + B\]
\[ \Rightarrow 5x + 3 = A \left( 2x + 4 \right) + B\]
\[ \Rightarrow 5x + 3 = \left( 2A \right) x + 4A + B\]
\[\text{Equating Coefficients of like terms}\]
\[\text{ 2  A} = 5\]
\[ \Rightarrow A = \frac{5}{2}\]
\[\text{ And }\]
\[4A + B = 3\]
\[ \Rightarrow 4 \times \frac{5}{2} + B = 3\]
\[ \Rightarrow B = - 7\]
\[ \therefore I = \frac{5}{2}\int\frac{\left( 2x + 4 \right) dx}{\sqrt{x^2 + 4x + 10}} - 7\int\frac{dx}{\sqrt{x^2 + 4x + 10}}\]
\[ = \frac{5}{2}\int\frac{\left( 2x + 4 \right) dx}{\sqrt{x^2 + 4x + 10}} - 7\int\frac{dx}{\sqrt{x^2 + 4x + 4 - 4 + 10}}\]
\[ = \frac{5}{2}\int\frac{\left( 2x + 4 \right) dx}{\sqrt{x^2 + 4x + 10}} - 7\int\frac{dx}{\sqrt{\left( x + 2 \right)^2 + \left( \sqrt{6} \right)^2}}\]
\[\text{ Putting,} x^2 + 4x + 10 = t\]
\[ \Rightarrow \left( 2x + 4 \right) dx = dt\]
\[\text{ Then,} \]
\[I = \frac{5}{2}\int\frac{dt}{\sqrt{t}} - 7 \text{ log }\left| x + 2 + \sqrt{\left( x + 2 \right)^2 + 6} \right| + C\]
\[ = \frac{5}{2}\int t^{- \frac{1}{2}} dt - 7 \text{ log} \left| x + 2 + \sqrt{x^2 + 4x + 10} \right| + C\]
\[ = \frac{5}{2} \times 2\sqrt{t} - 7 \text{ log} \left| x + 2 + \sqrt{x^2 + 4x + 10} \right| + C\]
\[ = 5\sqrt{x^2 + 4x + 10} - 7 \text{ log }\left| x + 2 + \sqrt{x^2 + 4x + 10} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.21 [पृष्ठ १११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.21 | Q 17 | पृष्ठ १११

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int \tan^4 x\ dx\]

\[\int \cot^5 x\ dx\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int {cosec}^4 2x\ dx\]


\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


\[\int\frac{\cos^7 x}{\sin x} dx\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×