Advertisements
Advertisements
प्रश्न
\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]
योग
उत्तर
\[\int\frac{\sin x}{1 + \sin x}dx\]
\[\text{Rationalising the denominator} \]
\[ \Rightarrow \int\frac{\sin x}{1 + \sin x} \times \frac{1 - \sin x}{1 - \sin x}\text{ dx }\]
\[ \Rightarrow \int\left( \frac{\sin x - \sin^2 x}{1 - \sin^2 x} \right)dx\]
\[ \Rightarrow \int\left( \frac{\sin x}{\cos^2 x} - \tan^2 x \right)dx\]
\[ \Rightarrow \int\left\{ \frac{\sin x}{\cos x} \times \frac{1}{\cos x} - \left( \sec^2 x - 1 \right) \right\}dx\]
\[ \Rightarrow \int\left( \sec x \tan x - \sec^2 x + 1 \right)dx\]
\[ \Rightarrow \sec x - \tan x + x + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]
` ∫ 1/ {1+ cos 3x} ` dx
\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]
\[\int \text{sin}^2 \left( 2x + 5 \right) \text{dx}\]
\[\int \cos^2 \frac{x}{2} dx\]
\[\int\text{sin mx }\text{cos nx dx m }\neq n\]
\[\int\frac{\cos x}{2 + 3 \sin x} dx\]
\[\int\frac{a}{b + c e^x} dx\]
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]
\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int \sec^4 2x \text{ dx }\]
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
` ∫ { x^2 dx}/{x^6 - a^6} dx `
\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]
\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int\frac{1}{1 - \cot x} dx\]
\[\int \log_{10} x\ dx\]
\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]
\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]
\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]
\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]
\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]