Advertisements
Advertisements
प्रश्न
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]
विकल्प
\[\frac{e^x}{x + 4} + C\]
\[\frac{e^x}{x + 3} + C\]
\[\frac{1}{\left( x + 4 \right)^2} + C\]
\[\frac{e^x}{\left( x + 4 \right)^2} + C\]
उत्तर
\[\frac{e^x}{x + 4} + C\]
\[\text{Let }I = \int\frac{\left( x + 3 \right)}{\left( x + 4 \right)^2} e^x dx\]
\[ \Rightarrow \int\left[ \frac{x + 4 - 1}{\left( x + 4 \right)^2} \right] e^x dx\]
\[ \Rightarrow \int\left[ \frac{1}{\left( x + 4 \right)} - \frac{1}{\left( x + 4 \right)^2} \right] e^x dx\]
\[\text{As, we know that }\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx = e^x f\left( x \right) + C\]
\[ \therefore I = \frac{e^x}{x + 4} + C\]
APPEARS IN
संबंधित प्रश्न
Integrate the following integrals:
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int \sec^4 x\ dx\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]