हिंदी

∫ 1 X ( X − 2 ) ( X − 4 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]
योग

उत्तर

\[\int\frac{1}{x\left( x - 2 \right)\left( x - 4 \right)}dx\]

\[\text{Let }\frac{1}{x\left( x - 2 \right)\left( x - 4 \right)} = \frac{A}{x} + \frac{B}{x - 2} + \frac{C}{x - 4}\]

\[ \Rightarrow \frac{1}{x\left( x - 2 \right)\left( x - 4 \right)} = \frac{A\left( x - 2 \right)\left( x - 4 \right) + B\left( x \right)\left( x - 4 \right) + Cx \cdot \left( x - 2 \right)}{x\left( x - 2 \right)\left( x - 4 \right)}\]

\[ \Rightarrow 1 = A\left( x - 2 \right)\left( x - 4 \right) + B\left( x \right) \cdot \left( x - 4 \right) + Cx . \left( x - 2 \right) ...........(1)\]

\[\text{Putting }x = 0\text{ in eq. (1)}\]

\[ \Rightarrow 1 = A\left( 0 - 2 \right)\left( 0 - 4 \right) + B \times 0 + C \times 0\]

\[ \Rightarrow \frac{1}{8} = A\]

\[\text{Putting }\left( x - 2 \right) = 0\text{ or }x = 2\text{ in eq. (1)}\]

\[ \Rightarrow 1 = A \times 0 + B\left( 2 \right)\left( 2 - 4 \right) + C \times 2 \times 0\]

\[ \Rightarrow B = - \frac{1}{4}\]

\[\text{Putting }\left( x - 4 \right) = 0\text{ or }x = 4\text{ in eq (1)}\]

\[ \Rightarrow 1 = A \times 0 + B \times 0 + C \cdot 4\left( 4 - 2 \right)\]

\[ \Rightarrow C = \frac{1}{8}\]

\[ \therefore \frac{1}{x\left( x - 2 \right)\left( x - 4 \right)} = \frac{1}{8x} - \frac{1}{4\left( x - 2 \right)} + \frac{1}{8\left( x - 4 \right)}\]

\[ \Rightarrow \int\frac{dx}{x\left( x - 2 \right)\left( x - 4 \right)} = \frac{1}{8}\int\frac{1}{x}dx - \frac{1}{4}\int\frac{1}{x - 2}dx + \frac{1}{8}\int\frac{1}{x - 4}dx\]

\[ = \frac{1}{8} \ln \left| x \right| - \frac{1}{4} \ln \left| x - 2 \right| + \frac{1}{8} \ln \left| x - 4 \right| + C\]

\[ = \frac{1}{8}\left( \ln \left| x \right| + \ln \left| x - 4 \right| - 2 \ln \left| x - 2 \right| \right) + C\]

\[ = \frac{1}{8}\left[ \ln \left| \frac{x\left( x - 4 \right)}{\left( x - 2 \right)^2} \right| \right] + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 2 | पृष्ठ १७६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×