हिंदी

∫ 1 √ 5 X 2 − 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]
योग

उत्तर

\[\int\frac{dx}{\sqrt{5 x^2 - 2x}}\]
\[ = \int\frac{dx}{\sqrt{5\left( x^2 - \frac{2}{5}x \right)}}\]
\[ = \frac{1}{\sqrt{5}}\int\frac{dx}{\sqrt{x^2 - \frac{2}{5}x + \left( \frac{1}{5} \right)^2 - \left( \frac{1}{5} \right)^2}}\]
\[ = \frac{1}{\sqrt{5}}\int\frac{dx}{\sqrt{\left( x - \frac{1}{5} \right)^2 - \left( \frac{1}{5} \right)^2}}\]
\[ = \frac{1}{\sqrt{5}} \text{ log }\left| x - \frac{1}{5} + \sqrt{\left( x - \frac{1}{5} \right)^2 + \left( \frac{1}{5} \right)^2} \right| + C\]
\[ = \frac{1}{\sqrt{5}} \text{ log }\left| \frac{5x - 1}{5} + \frac{\sqrt{5 x^2 - 2x}}{\sqrt{5}} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.17 [पृष्ठ ९३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.17 | Q 9 | पृष्ठ ९३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{1}{1 - \sin x} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int x \cos x\ dx\]

\[\int x \text{ sin 2x dx }\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×