हिंदी

∫ Sec − 1 √ X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \sec^{- 1} \sqrt{x}\ dx\]
योग

उत्तर

\[\text{We have}, \]

\[I = \int \sec^{- 1} \sqrt{x} \text{ dx}\]

\[\text{ Putting } \sqrt{x} = \sec \theta\]

\[ \Rightarrow x = \sec^2 \theta\]

\[ \Rightarrow dx = 2 \text{ sec }\text{ θ } \text{ sec} \text{ θ  } \text{ tan   θ } \text{ dθ }\]

\[ = 2 \sec^2 \theta \text{ tan   θ } \text{ dθ }\]

\[ \therefore I = 2\int\theta \sec^2 \theta \text{ tan   θ } \text{ dθ }\]

\[ = 2 \int \theta\tan \theta \sec^2 \text{    θ } \text{ dθ }\]

\[\text{Considering}\text{  θ  as first fucction and} \tan \theta \sec^2 \ \text{theta as second function}\]

\[I = 2\left[ \theta\frac{\tan^2 \theta}{2} - \int1\frac{\tan^2 \theta}{2}d\theta \right]................ \left( \because \int\tan \theta \sec^2 \text{ tan   θ } \text{ dθ } = \frac{\tan^2 \theta}{2} \right)\]

\[ = \theta \tan^2 \theta - \int\left( \sec^2 \theta - 1 \right)d\theta\]

\[ = \theta \tan^2 \theta - \tan \theta + \theta + C\]

\[ = \theta\left( 1 + \tan^2 \theta \right) - \tan \theta + C\]

\[ = \theta \sec^2 \theta - \sqrt{se c^2 \theta - 1} + C\]

\[ = \sec^{- 1} \sqrt{x} x - \sqrt{x - 1} + C\]

\[ = x \sec^{- 1} \sqrt{x} - \sqrt{x - 1} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 111 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int \cot^6 x \text{ dx }\]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int x \cos^2 x\ dx\]

\[\int {cosec}^3 x\ dx\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \tan^5 x\ dx\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×