Advertisements
Advertisements
प्रश्न
\[\int e^x \sec x \left( 1 + \tan x \right) dx\]
योग
उत्तर
\[\text{ Let I } = \int e^x \sec x\left( 1 + \tan x \right)dx\]
\[ = \int e^x \left( \sec x + \sec x \tan x \right)dx\]
\[\text{ Here, }f(x) = \text{ sec x Put e}^x f(x) = t\]
\[ \Rightarrow f'(x) = \sec x \tan x\]
\[\text{ let e}^x \sec x = t\]
\[\text{ Diff both sides w . r . t x }\]
\[ e^x \sec x + e^x \sec x \tan x = \frac{dt}{dx}\]
\[ \Rightarrow e^x \left( \sec x + \tan x \right)dx = dt\]
\[ \therefore \int e^x \left( \sec x + \sec x \tan x \right)dx = \int dt\]
\[ = t + C\]
\[ = e^x \sec x + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]
\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]
\[\int\frac{1}{x (3 + \log x)} dx\]
\[\int\frac{e^x + 1}{e^x + x} dx\]
\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]
\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]
\[\int \tan^3 \text{2x sec 2x dx}\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
\[\int \sin^5 x \cos x \text{ dx }\]
\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]
` ∫ {1}/{a^2 x^2- b^2}dx`
\[\int\frac{1}{4 x^2 + 12x + 5} dx\]
\[\int\frac{dx}{e^x + e^{- x}}\]
\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]
\[\int\frac{1}{3 + 4 \cot x} dx\]
\[\int x^2 e^{- x} \text{ dx }\]
\[\int x \cos^2 x\ dx\]
`int"x"^"n"."log" "x" "dx"`
\[\int x \sin x \cos x\ dx\]
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]
\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]
\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]
\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
\[\int \cot^5 x\ dx\]
\[\int \sin^5 x\ dx\]
\[\int \tan^5 x\ \sec^3 x\ dx\]
\[\int \tan^{- 1} \sqrt{x}\ dx\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]