Advertisements
Advertisements
प्रश्न
\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]
योग
उत्तर
\[\int\frac{\sin \sqrt{x}}{\sqrt{x}}dx\]
\[\text{Let} \sqrt{x} = t\]
\[ \Rightarrow \frac{1}{2\sqrt{x}} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{dx}{\sqrt{x}} = 2dt\]
\[Now, \int\frac{\sin \sqrt{x}}{\sqrt{x}}dx\]
\[ = 2\int\text{sin t dt}\]
\[ = 2 \left[ - \cos t \right] + C\]
\[ = - 2 \cos \sqrt{x} + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left( \sec^2 x + {cosec}^2 x \right) dx\]
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2} \text{dx} \]
\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]
\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]
\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]
\[\int \cos^2 \frac{x}{2} dx\]
` ∫ sin x \sqrt (1-cos 2x) dx `
\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
\[\int\frac{a}{b + c e^x} dx\]
\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
\[\int\frac{\cos^5 x}{\sin x} dx\]
\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
\[\int \sin^5 x \text{ dx }\]
\[\int \cos^5 x \text{ dx }\]
\[\int\frac{1}{2 x^2 - x - 1} dx\]
\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{ dx }\]
\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]
\[\int x \sin x \cos x\ dx\]
\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]
\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]
\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]
\[\int\frac{1}{\sin x + \sin 2x} dx\]
\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
\[\int\frac{x^3}{x + 1}dx\] is equal to
\[\int \sin^4 2x\ dx\]
\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]
\[\int \tan^{- 1} \sqrt{x}\ dx\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]