हिंदी

∫ X 2 + X − 1 X 2 + X − 6 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]
योग

उत्तर

\[\int\left( \frac{x^2 + x - 1}{x^2 + x - 6} \right)dx\]
\[\frac{x^2 + x - 1}{x^2 + x - 6} = 1 + \frac{5}{x^2 + x - 6}\]
\[ \int\left( \frac{x^2 + x - 1}{x^2 + x - 6} \right)dx\]
\[ = ∫ dx + 5\int\frac{dx}{x^2 + x - 6}\]
\[ = ∫  dx + 5\int\frac{dx}{x^2 + x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 - 6}\]
\[ = ∫ dx + 5\int\frac{dx}{\left( x + \frac{1}{2} \right)^2 - \frac{1}{4} - 6}\]


\[ = ∫ dx + 5\int\frac{dx}{\left( x + \frac{1}{2} \right)^2 - \left( \frac{5}{2} \right)^2}\]


\[ = x + 5 \times \frac{1}{2 \times \frac{5}{2}} \text{ log } \left| \frac{x + \frac{1}{2} - \frac{5}{2}}{x + \frac{1}{2} + \frac{5}{2}} \right| + C\]
\[ = x + \text{ log } \left| \frac{x - 2}{x + 3} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.2 [पृष्ठ १०६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.2 | Q 2 | पृष्ठ १०६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{x^3}{x - 2} dx\]

`  ∫  sin 4x cos  7x  dx  `

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×