Advertisements
Advertisements
प्रश्न
\[\int x e^{2x} \text{ dx }\]
योग
उत्तर
\[\int x e^{2x} \text{ dx }\]
` "Taking x as the first function and e"^2x " as the second function ". `
\[ = x\int e^{2x} dx - \int\left\{ \frac{d}{dx}\left( x \right)\int e^{2x} dx \right\}dx\]
\[ = \frac{x e^{2x}}{2} - \int\left( \frac{e^{2x}}{2} \right)dx\]
\[ = \frac{x}{2} e^{2x} - \frac{e^{2x}}{4} + C\]
\[ = e^{2x} \left( \frac{x}{2} - \frac{1}{4} \right) + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]
\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]
\[\int \cos^{- 1} \left( \sin x \right) dx\]
\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]
\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int \tan^2 \left( 2x - 3 \right) dx\]
\[\int \sin^2\text{ b x dx}\]
` ∫ sin 4x cos 7x dx `
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]
\[\int {cosec}^4 \text{ 3x } \text{ dx } \]
\[\int \cot^6 x \text{ dx }\]
Evaluate the following integrals:
\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]
\[\int\frac{1}{a^2 - b^2 x^2} dx\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{x}{x^4 - x^2 + 1} dx\]
\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]
\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]
\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]
\[\int\frac{1}{1 - \cot x} dx\]
\[\int x \cos x\ dx\]
\[\int \log_{10} x\ dx\]
\[\int x^3 \tan^{- 1}\text{ x dx }\]
\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]
\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]
\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]
\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]
\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]
\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int \tan^4 x\ dx\]
\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]