हिंदी

∫ X 3 X 4 − 18 X 2 + 11 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]
योग

उत्तर

` ∫   {x  dx}/{3 x^4 - 18 x^2 + 11}`
\[\text{ let } x^2 = t\]
\[ \Rightarrow \text{ 2x dx }= dt\]
\[ \Rightarrow \text{ x dx }= \frac{dt}{2}\]
Now, ` ∫   {x  dx}/{3 x^4 - 18 x^2 + 11}`
\[ = \frac{1}{2}\int\frac{dt}{3 t^2 - 18t + 11}\]
\[ = \frac{1}{3 \times 2}\int\frac{dt}{t^2 - 6t + \frac{11}{3}}\]
\[ = \frac{1}{6}\int\frac{dt}{t^2 - 6t + 9 - 9 + \frac{11}{3}}\]
\[ = \frac{1}{6}\int\frac{dt}{\left( t - 3 \right)^2 - \frac{16}{3}}\]
\[ = \frac{1}{6}\int\frac{dt}{\left( t - 3 \right)^2 - \left( \frac{4}{\sqrt{3}} \right)^2}\]
\[ = \frac{1}{6} \times \frac{1}{2 \times \frac{4}{\sqrt{3}}} \text{ log  }\left| \frac{t - 3 - \frac{4}{\sqrt{3}}}{t - 3 + \frac{4}{\sqrt{3}}} \right| + C\]
\[ = \frac{\sqrt{3}}{48} \text{ log  }\left| \frac{x^2 - 3 - \frac{4}{\sqrt{3}}}{x^2 - 3 + \frac{4}{\sqrt{3}}} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.16 [पृष्ठ ९०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.16 | Q 13 | पृष्ठ ९०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

`∫     cos ^4  2x   dx `


\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

`int 1/(cos x - sin x)dx`

`int 1/(sin x - sqrt3 cos x) dx`

\[\int x^3 \text{ log x dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

 
` ∫  x tan ^2 x dx 

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int \tan^3 x\ dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×