हिंदी

\[\Int\Left( 3x\Sqrt{X} + 4\Sqrt{X} + 5 \Right)Dx\] - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]
योग

उत्तर

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]
\[ = \int\left( 3 x^1 \cdot x^\frac{1}{2} + 4 x^\frac{1}{2} + 5 \right)dx\]
\[ = 3\int x^\frac{3}{2} dx + 4\int x^\frac{1}{2} dx + 5 ∫dx\]
\[ = 3\left[ \frac{x^\frac{3}{2} + 1}{\frac{3}{2} + 1} \right] + 4\left[ \frac{x^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + 5x + C\]
\[ = 3 \times \frac{2}{5} x^\frac{5}{2} + 4 \times \frac{2}{3} x^\frac{3}{2} + 5x + C\]
\[ = \frac{6}{5} x^\frac{5}{2} + \frac{8}{3} x^\frac{3}{2} + 5x + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.02 | Q 1 | पृष्ठ १४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( x^e + e^x + e^e \right) dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x^3 \text{ log x dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int \tan^4 x\ dx\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×