हिंदी

∫ Cos 3 √ X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \cos^3 \sqrt{x}\ dx\]
योग

उत्तर

\[\text{ Let, I } = \int \cos^3 \sqrt{x} \text{ dx } . . . . . \left( 1 \right)\]
\[\text{ Consider, }\sqrt{x} = t . . . . . \left( 2 \right)\]
\[\text{Differentiating both sides we get}, \]
\[\frac{1}{2\sqrt{x}}dx = dt\]
\[ \Rightarrow dx = 2\sqrt{x} dt\]
\[ \Rightarrow dx = 2t dt\]
\[\text{ Therefore,} \left( 1 \right) \text{ becomes,} \]
\[I = \int \cos^3 \text{ t  2t  dt }\]
\[ = 2\int t  \text{ cos}^3\text{  t   dt}\]
\[ = 2\int \text{ t }\left( \frac{3\cos t + \cos3t}{4} \right) dt \left( \text{ Since,} \cos 3A = 4 \cos^3 A - 3\cos  A \right)\]
\[ = \frac{3}{2}\int \text{ t  cos  t  dt } + \frac{1}{2}\int t \text{ cos  3t  dt }\]
\[ = \frac{3}{2}\left[ t\int \text{ cos t dt } - \int\left( \frac{d t}{d t}\int\text{ cos  t  dt } \right)dt \right] + \frac{1}{2}\left[ t\int \text{ cos  3t  dt }- \int\left( \frac{d t}{d t}\int\text{ cos 3t  dt } \right)dt \right]\]
\[ = \frac{3}{2}\left[ t \text{ sin  t }- \int\text{ sin  t  dt } \right] + \frac{1}{2}\left[ \frac{t \sin3t}{3} - \frac{1}{3}\int\text{ sin  3t  dt } \right]\]
\[ = \frac{3}{2}\left[ t \sin t + \cos t \right] + \frac{1}{2}\left[ \frac{t \sin3t}{3} + \frac{1}{9}\cos 3t \right] + C\]
\[ = \frac{3}{2}t \sin t + \frac{3}{2}\cos t + \frac{1}{6}t \sin3t + \frac{1}{18}\cos3t + C\]
\[ = \frac{3}{2}\sqrt{x}\sin\sqrt{x} + \frac{3}{2}\cos\sqrt{x} + \frac{1}{6}\sqrt{x}\sin\left( 3\sqrt{x} \right) + \frac{1}{18}\cos\left( 3\sqrt{x} \right) + C\]

Note: The final answer in indefinite integration may vary based on the integration constant.

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 55 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

`int"x"^"n"."log"  "x"  "dx"`

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int \tan^4 x\ dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×