हिंदी

∫ ( 2 X 2 + 3 ) √ X + 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]
योग

उत्तर

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx }\]
\[\text{ Let x  }+ 2 = t\]
\[ \Rightarrow x = t - 2\]
\[ \Rightarrow dx = dt\]
\[\int\left[ 2 \left( t - 2 \right)^2 + 3 \right]\sqrt{t}\text{   dt }\]
\[ = \int\left( 2\sqrt{t} \left( t^2 - 4t + 4 \right) + 3\sqrt{t} \right)\text{ dt }\]
\[ = 2\int\left( t^\frac{5}{2} - 4 t^\frac{3}{2} + 4 t^\frac{1}{2} \right) dt + 3\int t^\frac{1}{2} \text{ dt  }\]
\[ = 2\left[ \frac{t^\frac{5}{2} + 1}{\frac{5}{2} + 1} - \frac{4 t^\frac{3}{2} + 1}{\frac{3}{2} + 1} + \frac{4 t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + 3\left[ \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + C\]
\[ = 2\left[ \frac{2}{7} t^\frac{7}{2} - \frac{8}{5} t^\frac{5}{2} + \frac{8}{3} t^\frac{3}{2} \right] + 2 t^\frac{3}{2} + C\]
\[ = \frac{4}{7} t^\frac{7}{2} - \frac{16}{5} t^\frac{5}{2} + \frac{16}{3} t^\frac{3}{2} + 2 t^\frac{3}{2} + C\]
\[ = \frac{4}{7} t^\frac{7}{2} - \frac{16}{5} t^\frac{5}{2} + \frac{22}{3} t^\frac{3}{2} + C\]
\[ = \frac{4}{7} \left( x + 2 \right)^\frac{7}{2} - \frac{16}{5} \left( x + 2 \right)^\frac{5}{2} + \frac{22}{3} \left( x + 2 \right)^\frac{3}{2} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.10 [पृष्ठ ६५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.10 | Q 5 | पृष्ठ ६५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int \sec^4 x\ dx\]


\[\int x \sec^2 2x\ dx\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×