हिंदी

∫ 1 4 Sin 2 X + 4 Sin X Cos X + 5 Cos 2 X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]

योग

उत्तर

\[\text{ Let  I } = \int\frac{1}{4 \sin^2 x + 4 \sin x \cdot \cos x + 5 \cos^2 x}dx\]

Dividing numerator and denominator by cos2x we get

\[I = \int\frac{\sec^2 x}{4 \tan^2 x + 4 \tan x + 5}dx\]

\[\text{ Putting tan x = t}\]

\[ \Rightarrow \text{ sec}^2 \text{ x  dx = dt }\]

\[ \therefore I = \int\frac{dt}{4 t^2 + 4t + 5}\]

\[ = \frac{1}{4}\int\frac{dt}{t^2 + t + \frac{5}{4}}\]

\[ = \frac{1}{4}\int\frac{dt}{t^2 + t + \frac{1}{4} - \frac{1}{4} + \frac{5}{4}}\]

\[ = \frac{1}{4}\int\frac{dt}{\left( t + \frac{1}{2} \right)^2 + 1^2}\]

\[ = \frac{1}{4} \times \tan^{- 1} \left( t + \frac{1}{2} \right) + C.......... \left[ \because \int\frac{1}{x^2 + a^2}dx = \frac{1}{a} \tan^{- 1} \frac{x}{a} + C \right]\]

\[ = \frac{1}{4} \tan^{- 1} \left( \frac{2t + 1}{2} \right) + C\]

\[ = \frac{1}{4} \tan^{- 1} \left( \frac{2 \tan x + 1}{2} \right) + C...........\left[ \because t = \tan x \right]\]

\[ = \frac{1}{4} \tan^{- 1} \left( \tan x + \frac{1}{2} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 57 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int \cos^5 x \text{ dx }\]

\[\int \sin^5 x \cos x \text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\cos\sqrt{x}\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int \sec^6 x\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×