Advertisements
Advertisements
प्रश्न
\[\int \sin^5 x \cos x \text{ dx }\]
योग
उत्तर
∫ sin5 x cos x dx
Let sin x = t
cos x dx = dt
Now, ∫ sin5 x cos x dx
= ∫ t5 . dt
\[= \frac{t^6}{6} + C\]
\[ = \frac{\sin^6 x}{6} + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]
\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]
\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]
\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]
\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int \cos^2 \frac{x}{2} dx\]
\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]
` ∫ tan^5 x dx `
` ∫ \sqrt{tan x} sec^4 x dx `
\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]
\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]
` ∫ \sqrt{"cosec x"- 1} dx `
\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int x^2 \sin^2 x\ dx\]
\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]
\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]
\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]
\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[\int\sqrt{\frac{a + x}{x}}dx\]
\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]
\[\int\sqrt{x^2 - a^2} \text{ dx}\]
\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]
\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]
\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]