हिंदी

∫ X 2 − 2 X 5 − X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]
योग

उत्तर

\[\text{We have}, \]
\[I = \int\left( \frac{x^2 - 2}{x^5 - x} \right) dx\]
\[ = \int\frac{\left( x^2 - 2 \right)}{x \left( x^4 - 1 \right)}dx\]
\[ = \int\frac{x \left( x^2 - 2 \right)}{x^2 \left( x^2 - 1 \right) \left( x^2 + 1 \right)}dx\]
\[\text{ Putting x^2 = t}\]
\[ \Rightarrow 2x\ dx = dt\]
\[ \Rightarrow x\ dx = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\frac{\left( t - 2 \right)}{t \left( t - 1 \right) \left( t + 1 \right)}\text{  dt }\]
\[\text{ Let }  \frac{t - 2}{t \left( t - 1 \right) \left( t + 1 \right)} = \frac{A}{t} + \frac{B}{t - 1} + \frac{C}{t + 1}\]
\[ \Rightarrow \frac{t - 2}{t \left( t - 1 \right) \left( t + 1 \right)} = \frac{A \left( t - 1 \right) \left( t + 1 \right) + Bt \left( t + 1 \right) + Ct \cdot \left( t - 1 \right)}{t \left( t - 1 \right) \left( t + 1 \right)}\]
\[ \Rightarrow t - 2 = A \left( t - 1 \right) \left( t + 1 \right) + B t \left( t + 1 \right) + C t \left( t - 1 \right)\]
\[\text{ Putting t = 1}\]
\[ \therefore 1 - 2 = B \times 2\]
\[ \Rightarrow B = - \frac{1}{2}\]
\[\text{ Putting t = 0}\]
\[ \therefore - 2 = A \left( - 1 \right)\]
\[ \Rightarrow A = 2\]
\[\text{ Putting t = - 1}\]
\[ \therefore - 3 = C \left( - 1 \right) \left( - 2 \right)\]
\[ \Rightarrow C = - \frac{3}{2}\]
\[ \therefore I = \frac{2}{2}\int\frac{dt}{t} - \frac{1}{2 \times 2}\int\frac{dt}{t - 1} - \frac{3}{2 \times 2}\int\frac{d}{t + 1}\]
\[ = \text{ log} \left| t \right| - \frac{1}{4} \text{ log }\left| t - 1 \right| - \frac{3}{4} \text{ log} \left| t + 1 \right| + C\]
\[ = \text{ log }\left| x^2 \right| - \frac{1}{4} \text{ log }\left| x^2 - 1 \right| - \frac{3}{4} \text{ log} \left| x^2 + 1 \right| + C\]
\[ = 2 \text{ log } \left| x \right| - \frac{1}{4} \text{ log} \left| x^2 - 1 \right| - \frac{3}{4} \text{ log} \left| x^2 + 1 \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 126 | पृष्ठ २०५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×