Advertisements
Advertisements
प्रश्न
\[\int\frac{\sec^2 x}{\tan x + 2} dx\]
योग
उत्तर
\[\text{Let I} = \int\frac{\sec^2 x}{\ tanx + 2}dx\]
\[\text{Putting}\ \tan x = t\]
\[ \Rightarrow \sec^2 x = \frac{dt}{dx}\]
\[ \Rightarrow \sec^2 x dx = dt\]
\[ \therefore I = \int\frac{1}{t + 2}dt\]
\[ = \text{ln} \left| t + 2 \right| + C\]
\[ = \text{ln} \left| \ tan\ x + 2 \right| + C \left[ \because t = \tan x \right]\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]
`∫ cos ^4 2x dx `
` ∫ cos mx cos nx dx `
\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]
\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1} \text{dx}\]
\[\int x^3 \cos x^4 dx\]
\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]
\[\ ∫ x \text{ e}^{x^2} dx\]
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]
\[\int\frac{1}{\sin x \cos^3 x} dx\]
Evaluate the following integrals:
\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]
\[\int\frac{x^2 - 1}{x^2 + 4} dx\]
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]
\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]
\[\int \left( \log x \right)^2 \cdot x\ dx\]
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int {cosec}^3 x\ dx\]
` ∫ x tan ^2 x dx
\[\int x^3 \tan^{- 1}\text{ x dx }\]
\[\int e^x \left( \cot x + \log \sin x \right) dx\]
\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]
\[\int\sqrt{3 x^2 + 4x + 1}\text{ dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
\[\int\frac{\cos^7 x}{\sin x} dx\]