Advertisements
Advertisements
प्रश्न
उत्तर
\[I = \int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[ = \int\frac{x^2 \cdot x}{\left( x^2 \right)^2 + x^2 + 1}dx\]
\[\text{ Let x }^2 = \text{ t or 2xdx } = dt\]
\[ \Rightarrow I = \frac{1}{2}\int\frac{t}{t^2 + t + 1}dt\]
\[ = \frac{1}{4}\int\frac{2t}{t^2 + t + 1}dt\]
\[ = \frac{1}{4}\int\frac{2t + 1 - 1}{t^2 + t + 1}dt\]
\[= \frac{1}{4}\int\left[ \frac{\left( 2t + 1 \right)}{\left( t^2 + t + 1 \right)} - \frac{1}{\left( t^2 + t + 1 \right)} \right]dt\]
\[ = \frac{1}{4}\left[ \text{ log}\left| t^2 + t + 1 \right| - \int\frac{1}{\left( t^2 + t + \frac{1}{4} + \frac{3}{4} \right)}dt \right]\]
\[ = \frac{1}{4}\left[ \text{ log }\left| t^2 + t + 1 \right| - \int\frac{1}{\left( t + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}dt \right]\]
\[ = \frac{1}{4}\left[ \text{ log}\left| t^2 + t + 1 \right| - \frac{2}{\sqrt{3}}\tan\frac{\left( t + \frac{1}{2} \right)}{\left( \frac{\sqrt{3}}{2} \right)} \right] + c\]
\[ = \frac{1}{4}\left[ \text{ log }\left| t^2 + t + 1 \right| - \frac{2}{\sqrt{3}}\tan\left( \frac{2t + 1}{\sqrt{3}} \right) \right] + c\]
\[= \frac{1}{4}\left[ \text{ log }\left| x^4 + x^2 + 1 \right| - \frac{2}{\sqrt{3}}\tan\left( \frac{2 x^2 + 1}{\sqrt{3}} \right) \right] + c\]
APPEARS IN
संबंधित प्रश्न
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
` ∫ sin x \sqrt (1-cos 2x) dx `
` = ∫ root (3){ cos^2 x} sin x dx `
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then