हिंदी

∫ X 3 X 4 + X 2 + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
योग

उत्तर

\[I = \int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[ = \int\frac{x^2 \cdot x}{\left( x^2 \right)^2 + x^2 + 1}dx\]
\[\text{ Let x }^2 = \text{ t or 2xdx } = dt\]
\[ \Rightarrow I = \frac{1}{2}\int\frac{t}{t^2 + t + 1}dt\]
\[ = \frac{1}{4}\int\frac{2t}{t^2 + t + 1}dt\]
\[ = \frac{1}{4}\int\frac{2t + 1 - 1}{t^2 + t + 1}dt\]

\[= \frac{1}{4}\int\left[ \frac{\left( 2t + 1 \right)}{\left( t^2 + t + 1 \right)} - \frac{1}{\left( t^2 + t + 1 \right)} \right]dt\]
\[ = \frac{1}{4}\left[ \text{ log}\left| t^2 + t + 1 \right| - \int\frac{1}{\left( t^2 + t + \frac{1}{4} + \frac{3}{4} \right)}dt \right]\]
\[ = \frac{1}{4}\left[ \text{ log }\left| t^2 + t + 1 \right| - \int\frac{1}{\left( t + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}dt \right]\]
\[ = \frac{1}{4}\left[ \text{ log}\left| t^2 + t + 1 \right| - \frac{2}{\sqrt{3}}\tan\frac{\left( t + \frac{1}{2} \right)}{\left( \frac{\sqrt{3}}{2} \right)} \right] + c\]
\[ = \frac{1}{4}\left[ \text{ log }\left| t^2 + t + 1 \right| - \frac{2}{\sqrt{3}}\tan\left( \frac{2t + 1}{\sqrt{3}} \right) \right] + c\]

\[= \frac{1}{4}\left[ \text{ log }\left| x^4 + x^2 + 1 \right| - \frac{2}{\sqrt{3}}\tan\left( \frac{2 x^2 + 1}{\sqrt{3}} \right) \right] + c\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.19 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.19 | Q 16 | पृष्ठ १०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int x \sec^2 2x\ dx\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×