हिंदी

∫ Sin X √ Cos 2 X − 2 Cos X − 3 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]
योग

उत्तर

\[\text{ Let I }= \int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}}dx\]
\[\text{ Putting  cos  x  = t}\]
\[ \Rightarrow - \text{ sin  x  dx }= dt\]
\[ \Rightarrow \text{ sin  x  dx } = - dt\]
\[ \therefore I = - \int\frac{dt}{\sqrt{t^2 - 2t - 3}}\]
\[ = - \int\frac{dt}{\sqrt{t^2 - 2t + 1 - 4}}\]
\[ = - \int\frac{dt}{\sqrt{\left( t - 1 \right)^2 - \left( 2 \right)^2}}\]
\[ = - \text{ ln }\left| t - 1 + \sqrt{\left( t - 1 \right)^2 - 4} \right| + C ..........................\left[ \because \int\frac{1}{\sqrt{x^2 - a^2}}dx = \text{ ln}\left| x + \sqrt{x^2 - a^2} \right| + C \right]\]
\[ = - \text{ ln }\left| \left( \cos x - 1 \right) + \sqrt{\cos^2 x - 2 \cos x - 3} \right| + C.................... \left[ \because t = \cos x \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 48 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int \sin^2 \frac{x}{2} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int \sec^4 2x \text{ dx }\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×