हिंदी

∫ 1 3 x 2 + 13 x − 10 dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]
योग

उत्तर

\[\int\frac{1}{3 x^2 + 13x - 10}dx\]
\[ = \frac{1}{3}\int\frac{1}{x^2 + \frac{13}{3}x - \frac{10}{3}}dx\]
\[ = \frac{1}{3}\int\frac{1}{x^2 + \frac{13 x}{3} + \left( \frac{13}{6} \right)^2 - \left( \frac{13}{6} \right)^2 - \frac{10}{3}}dx\]
\[ = \frac{1}{3}\int\frac{1}{\left( x + \frac{13}{6} \right)^2 - \frac{169}{36} - \frac{10}{3}}dx\]
\[ = \frac{1}{3}\int\frac{1}{\left( x + \frac{13}{6} \right)^2 - \frac{169 - 120}{36}}dx\]
\[ = \frac{1}{3}\int\frac{1}{\left( x + \frac{13}{6} \right)^2 - \left( \frac{17}{6} \right)^2}dx\]
\[ = \frac{1}{3} \times \frac{1}{2 \times \frac{17}{6}} \text{ ln } \left| \frac{x + \frac{13}{6} - \frac{17}{6}}{x + \frac{13}{6} + \frac{17}{6}} \right|  .............\left[ \because \int\frac{1}{x^2 - a^2}dx = \frac{1}{2a}\text{ ln }\left| \frac{x - a}{x + a} \right| + C \right]\]
\[ = \frac{1}{17} \text{ ln}\left| \frac{x - \frac{2}{3}}{x + 5} \right| + C\]
\[ = \frac{1}{17} \text{ ln }\left| \frac{3x - 2}{3x + 15} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 47 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int \cos^2 \frac{x}{2} dx\]

 


` ∫   cos  3x   cos  4x` dx  

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

` ∫  sec^6   x  tan    x   dx `

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×