Advertisements
Advertisements
प्रश्न
` ∫ sec^6 x tan x dx `
योग
उत्तर
` ∫ sec^6 x tan x dx `
=∫ sec6 x.sec x tan x dx
Let sec x = t
Let sec x = t
⇒ sec x tan x dx = dt
Now, ∫ sec6 x.sec x tan x dx
= ∫ t6. dt
Now, ∫ sec6 x.sec x tan x dx
= ∫ t6. dt
\[= \frac{t^6}{6} + C\]
\[ = \frac{\sec^6 x}{6} + C\]
\[ = \frac{\sec^6 x}{6} + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]
\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]
\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]
\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]
\[\int x^3 \cos x^4 dx\]
\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]
\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
\[\int\frac{1}{a^2 - b^2 x^2} dx\]
\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]
\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]
\[\int\frac{x}{x^2 + 3x + 2} dx\]
\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{ dx}\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]
\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]
\[\int x^2 \cos 2x\ \text{ dx }\]
\[\int x^3 \cos x^2 dx\]
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]
\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]
\[\int e^x \left( \tan x - \log \cos x \right) dx\]
\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int \sin^5 x\ dx\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int \sin^{- 1} \sqrt{x}\ dx\]