हिंदी

∫ X 2 √ X − 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
योग

उत्तर

\[\int\frac{x^2}{\sqrt{x - 1}}\text{  dx  }\]
\[\text{Let x}  - 1 = t^2 \]
\[ \Rightarrow x = t^2 + 1\]
\[ \Rightarrow 1 = 2t \frac{dt}{dx}\]
\[ \Rightarrow dx =  \text{ 2t dt  }\]
\[Now, \int\frac{x^2}{\sqrt{x - 1}}\text{ dx }\]
\[ = \int\frac{\left( t^2 + 1 \right)^2}{t}\text{ 2t dt }\]
\[ = 2\int\left( t^4 + 2 t^2 + 1 \right)dt\]
\[ = 2\left[ \frac{t^{4 + 1}}{4 + 1} + \frac{2 t^{2 + 1}}{2 + 1} + t \right] + C\]
\[ = 2\left[ \frac{t^5}{5} + \frac{2 t^3}{3} + t \right] + C\]
\[ = 2\left[ \frac{3 t^5 + 10 t^3 + 15t}{15} \right] + C\]
\[ = \frac{2}{15}t\left[ 3 t^4 + 10 t^2 + 15 \right] + C\]
\[ = \frac{2}{15}\sqrt{x - 1} \left[ 3 \left( x - 1 \right)^2 + 10\left( x - 1 \right) + 15 \right] + C\]
\[ = \frac{2}{15}\sqrt{x - 1} \left[ 3\left( x^2 - 2x + 1 \right) + 10x - 10 + 15 \right] + C\]
\[ = \frac{2}{15}\sqrt{x - 1} \left[ 3 x^2 - 6x + 3 + 10x - 10 + 15 \right] + C\]
\[ = \frac{2}{15}\sqrt{x - 1}\left[ 3 x^2 + 4x + 8 \right] + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.10 [पृष्ठ ६५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.10 | Q 2 | पृष्ठ ६५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int \sin^2 \frac{x}{2} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×