हिंदी

∫ X 2 √ 3 X + 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
योग

उत्तर

\[\int\frac{x^2 dx}{\sqrt{3x + 4}}\]
\[\text{Let 3x + 4 }= t \]
\[ \Rightarrow x = \frac{t - 4}{3}\]
\[ \Rightarrow 1 = \frac{1}{3} . \frac{dt}{dx}\]
\[ \Rightarrow dx = \frac{dt}{3}\]
\[Now, \int\frac{x^2 dx}{\sqrt{3x + 4}}\]
\[ = \frac{1}{3}\int\frac{\left( \frac{t - 4}{3} \right)^2}{\sqrt{t}}dt\]
\[ = \frac{1}{27}\int\left( \frac{t^2}{\sqrt{t}} - \frac{8t}{\sqrt{t}} + \frac{16}{\sqrt{t}} \right)dt\]


\[ = \frac{1}{27}\int\left( t^\frac{3}{2} - 8 t^\frac{1}{2} + 16 t^{- \frac{1}{2}} \right)dt\]
\[ = \frac{1}{27} \left[ \frac{t^\frac{3}{2} + 1}{\frac{3}{2} + 1} + \frac{8 t^\frac{1}{2} + 1}{\frac{1}{2} + 1} + \frac{16 t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + C\]
\[ = \frac{1}{27} \left[ \frac{2}{5} t^\frac{5}{2} - \frac{8 \times 2}{3} t^\frac{3}{2} + 32 t^\frac{1}{2} \right] + C\]
\[ = \frac{2}{135} \left( t \right)^\frac{5}{2} - \frac{16}{81} t^\frac{3}{2} + \frac{32}{27} t^\frac{1}{2} + C\]
\[ = \frac{2}{135} \left( 3x + 4 \right)^\frac{5}{2} - \frac{16}{81} \left( 3x + 4 \right)^\frac{3}{2} + \frac{32}{27} \left( 3x + 4 \right)^\frac{1}{2} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.10 [पृष्ठ ६५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.10 | Q 3 | पृष्ठ ६५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int {cosec}^3 x\ dx\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×