हिंदी

∫ 1 Sin X Cos 3 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sin x \cos^3 x} dx\]
योग

उत्तर

\[\int\frac{dx}{\sin x . \cos^3 x}\]

` "Dividing  numerator  and  denominaor by " cos^4 x `
\[ = \int\frac{\frac{1}{\cos^4 x} dx}{\frac{\sin x . \cos^3 x}{\cos^4 x}}\]
`  ∫   { . sec^4 x   dx}/{tan x}`
`  ∫   {sec^2 x . sec^2 x   dx}/{tan x}`
\[ = \int\frac{\left( 1 + \tan^2 x \right) . \sec^2 x}{\tan x}dx\]
\[Let \tan x = t\]
` ⇒  sec^2  x   = dx / dt`
` ⇒  sec^2  x  dx = dt `
\[Now, \int\frac{\left( 1 + \tan^2 x \right) . \sec^2 x}{\tan x}dx \]
\[ = \int\frac{\left( 1 + t^2 \right)}{t}dt\]
\[ = \int\left( \frac{1}{t} + t \right)dt\]
\[ = \text{log} \left| \text{t} \right| + \frac{t^2}{2} + C\]
\[ = \text{log }\left| \tan x \right| + \frac{\tan^2 x}{2} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.12 [पृष्ठ ७३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.12 | Q 13 | पृष्ठ ७३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×