हिंदी

∫ 2 X + 5 √ X 2 + 2 X + 5 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]
योग

उत्तर

\[\text{ Let I }= \int\frac{\left( 2x + 5 \right) dx}{\sqrt{x^2 + 2x + 5}}\]
\[\text{ Consider,} \]
\[2x + 5 = A \frac{d}{dx} \left( x^2 + 2x + 5 \right) + B\]
\[ \Rightarrow 2x + 5 = A \left( 2x + 2 \right) + B\]
\[ \Rightarrow 2x + 5 = \left( 2A \right) x + 2A + B\]
\[\text{Equating Coefficients of like terms}\]
\[2A = 2 \Rightarrow A = 1\]
\[\text{ And }\]
\[ 2A + B = 5 \Rightarrow B = 3\]
\[ \therefore I = \int\left( \frac{2x + 2 + 3}{\sqrt{x^2 + 2x + 5}} \right) dx\]
\[ = \int\frac{\left( 2x + 2 \right) dx}{\sqrt{x^2 + 2x + 5}} + 3\int\frac{dx}{\sqrt{x^2 + 2x + 5}}\]
\[\text{ let x}^2 + 2x + 5 = t\]
\[ \Rightarrow \left( 2x + 2 \right) dx = dt\]
\[\text{ Then,} \]
\[I = \int\frac{dt}{\sqrt{t}} + 3\int\frac{dx}{\sqrt{x^2 + 2x + 1 + 4}}\]
\[ = \int t^{- \frac{1}{2}} dt + 3 \int\frac{dx}{\sqrt{\left( x + 1 \right)^2 + 2^2}}\]
\[ = \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} + 3 \text{ log }\left| x + 1 + \sqrt{\left( x + 1 \right)^2 + 4} \right| + C\]
\[ = 2\sqrt{t} + 3 \text{ log }\left| x + 1 + \sqrt{x^2 + 2x + 5} \right| + C\]
\[ = 2\sqrt{x^2 + 2x + 5} + 3 \text{ log }\left| x + 1 + \sqrt{x^2 + 2x + 5} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.21 [पृष्ठ ११०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.21 | Q 12 | पृष्ठ ११०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int \tan^3 x\ dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×