Advertisements
Advertisements
प्रश्न
\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]
योग
उत्तर
\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2}dx\]
\[\text{Let} \tan^{- 1} x = t\]
\[ \Rightarrow \frac{1}{1 + x^2}dx = dt\]
\[Now, \int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2}dx\]
\[ = \int\text{sin t dt} \]
\[ = - \cos \left( t \right) + C\]
\[ = - \cos \left( \tan^{- 1} x \right) + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{1 - \cos x} dx\]
\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int\frac{x^3}{x - 2} dx\]
Integrate the following integrals:
\[\int\text{sin 2x sin 4x sin 6x dx} \]
\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]
\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{ dx }\]
\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]
\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int2 x^3 e^{x^2} dx\]
` ∫ x tan ^2 x dx
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]
\[\int x^2 \tan^{- 1} x\text{ dx }\]
\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]
\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]
\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]
\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]
\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to
\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]
\[\int \sin^4 2x\ dx\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int \tan^5 x\ \sec^3 x\ dx\]
\[\int\frac{\log x}{x^3} \text{ dx }\]
\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]
\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]
\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]
\[\int\frac{x}{x^3 - 1} \text{ dx}\]