Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\left[ \frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} \right]dx\]
\[ = \int\left[ \left( 7x - 5 \right)^{- 3} + \left( 5x - 4 \right)^{- \frac{1}{2}} \right]dx\]
\[ = \frac{\left( 7x - 5 \right)^{- 3 + 1}}{7\left( - 3 + 1 \right)} + \frac{\left( 5x - 4 \right)^{- \frac{1}{2} + 1}}{5\left( - \frac{1}{2} + 1 \right)} + C\]
\[ = \frac{\left( 7x - 5 \right)^{- 2}}{- 14} + \frac{2}{5} \left( 5x - 4 \right)^\frac{1}{2} + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]