हिंदी

∫ X 2 + X − 1 X 2 + X − 6 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]
योग

उत्तर

\[\int\left( \frac{x^2 + x - 1}{x^2 + x - 6} \right)dx\]
\[ = \int\left( \frac{x^2 + x - 6 + 6 - 1}{x^2 + x - 6} \right)dx\]
\[ = \int\left( \frac{x^2 + x - 6}{x^2 + x - 6} \right)dx + 5\int\frac{1}{x^2 + x - 6}dx\]
\[ = \int dx + 5\int\frac{1}{x^2 + 3x - 2x - 6}dx\]
\[ = \int dx + 5\int\frac{1}{x\left( x + 3 \right) - 2\left( x + 3 \right)}dx\]
\[ = \int dx + 5\int\frac{1}{\left( x - 2 \right)\left( x + 3 \right)}dx ............(1)\]
\[\text{Let }\frac{1}{\left( x - 2 \right)\left( x + 3 \right)} = \frac{A}{x - 2} + \frac{B}{x + 3}\]
\[ \Rightarrow \frac{1}{\left( x - 2 \right)\left( x + 3 \right)} = \frac{A\left( x + 3 \right) + B\left( x - 2 \right)}{\left( x - 2 \right)\left( x + 3 \right)}\]
\[ \Rightarrow 1 = A\left( x + 3 \right) + B\left( x - 2 \right) . ............(2) \]
\[\text{Putting }x + 3 = 0\text{ or }x = - 3\text{ in eq. (2)}\]

\[\Rightarrow 1 = A \times 0 + B\left( - 3 - 2 \right)\]

\[\Rightarrow B = - \frac{1}{5}\]

\[\text{Putting }x - 2 = 0\text{ or }x = 2\text{ in eq. (2)}\]

\[\Rightarrow 1 = A\left( 2 + 3 \right) + B \times 0\]

\[\Rightarrow A = \frac{1}{5}\]

\[\therefore \frac{1}{\left( x - 2 \right)\left( x + 3 \right)} = \frac{1}{5}\left( x - 2 \right) - \frac{1}{5}\left( x + 3 \right)\]

\[ \Rightarrow \int\frac{1}{\left( x - 2 \right)\left( x + 3 \right)}dx = \frac{1}{5}\int\frac{dx}{x - 2} - \frac{1}{5}\int\frac{dx}{x + 3}\]

\[ = \frac{1}{5} \ln \left| x - 2 \right| - \frac{1}{5} \ln \left| x + 3 \right| + C\]

\[ = \frac{1}{5} \ln \left| \frac{x - 2}{x + 3} \right| + C ...........(3)\]

From eq. (1) and eq. (3)

\[ \therefore \int\left( \frac{x^2 + x - 1}{x^2 + x - 6} \right)dx = x + \frac{5}{5} \ln \left| \frac{x - 2}{x + 3} \right| + C\]

\[ = x + \ln \left| x - 2 \right| - \ln \left| x + 3 \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 3 | पृष्ठ १७६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int x \cos x\ dx\]

\[\int2 x^3 e^{x^2} dx\]

\[\int x \sin x \cos 2x\ dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int \sin^4 2x\ dx\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×