हिंदी

∫ 1 Sin X ( 3 + 2 Cos X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]
योग

उत्तर

We have,
\[I = \int\frac{dx}{\sin x \left( 3 + 2 \cos x \right)}\]
\[ = \int\frac{\sin x dx}{\sin^2 x \left( 3 + 2 \cos x \right)}\]
\[ = \int\frac{\sin x dx}{\left( 1 - \cos^2 x \right) \left( 3 + 2 \cos x \right)}\]
\[ = \int\frac{\sin x dx}{\left( 1 - \cos x \right) \left( 1 + \cos x \right) \left( 3 + 2 \cos x \right)}\]
\[\text{Putting }\cos x = t\]
\[ \Rightarrow - \sin x dx = dt\]
\[ \Rightarrow \sin x dx = - dt\]
\[ \therefore I = \int\frac{- dt}{\left( 1 - t \right) \left( 1 + t \right) \left( 3 + 2t \right)}\]
\[ = \int\frac{dt}{\left( t - 1 \right) \left( t + 1 \right) \left( 3 + 2t \right)}\]
\[\text{Let }\frac{1}{\left( t - 1 \right) \left( t + 1 \right) \left( 3 + 2t \right)} = \frac{A}{t - 1} + \frac{B}{t + 1} + \frac{C}{3 + 2t}\]
\[ \Rightarrow \frac{1}{\left( t - 1 \right) \left( t + 1 \right) \left( 3 + 2t \right)} = \frac{A \left( t + 1 \right) \left( 3 + 2t \right) + B \left( t - 1 \right) \left( 3 + 2t \right) + C \left( t + 1 \right) \left( t - 1 \right)}{\left( t - 1 \right) \left( t + 1 \right) \left( 3 + 2t \right)}\]
\[ \Rightarrow 1 = A \left( t + 1 \right) \left( 3 + 2t \right) + B \left( t - 1 \right) \left( 3 + 2t \right) + C \left( t + 1 \right) \left( t - 1 \right)\]
\[\text{Putting t + 1 = 0}\]
\[ \Rightarrow t = - 1\]
\[1 = A \times 0 + B \left( - 2 \right) \left( 3 - 2 \right) + C \times 0\]
\[ \Rightarrow 1 = B \left( - 2 \right)\]
\[ \Rightarrow B = - \frac{1}{2}\]
\[\text{Putting t - 1 = 0}\]
\[ \Rightarrow t = 1\]
\[1 = A \left( 2 \right) \left( 5 \right) + B \times 0 + C \times 0\]
\[ \Rightarrow A = \frac{1}{10}\]
\[\text{Putting 3 + 2t = 0}\]
\[ \Rightarrow t = - \frac{3}{2}\]
\[1 = A \times 0 + B \times 0 + C \left( - \frac{3}{2} + 1 \right) \left( - \frac{3}{2} - 1 \right)\]
\[ \Rightarrow 1 = C \left( - \frac{1}{2} \right) \left( - \frac{5}{2} \right)\]
\[C = \frac{4}{5}\]
Then,
\[I = \frac{1}{10}\int\frac{dt}{t - 1} - \frac{1}{2}\int\frac{dt}{t + 1} + \frac{4}{5}\int\frac{dt}{3 + 2t}\]
\[ = \frac{1}{10} \log \left| t - 1 \right| - \frac{1}{2} \log \left| t + 1 \right| + \frac{4}{5} \times \frac{\log \left| 3 + 2t \right|}{2} + C\]
\[ = \frac{1}{10} \log \left| t - 1 \right| - \frac{1}{2} \log \left| t + 1 \right| + \frac{2}{5}\log \left| 3 + 2t \right| + C\]
\[ = \frac{1}{10} \log \left| \cos x - 1 \right| - \frac{1}{2} \log \left| \cos x + 1 \right| + \frac{2}{5} \log \left| 3 + 2 \cos x \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 60 | पृष्ठ १७८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×