Advertisements
Advertisements
प्रश्न
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]
योग
उत्तर
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]
\[\text{Let }\sin^{- 1} x = t\]
\[ \Rightarrow \frac{1}{\sqrt{1 - x^2}}dx = dt\]
\[Now, \int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx \]
\[ = \int t^3 dt\]
\[ = \frac{t^4}{4} + C\]
\[ = \frac{\left( \sin^{- 1} x \right)^4}{4} + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]
\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]
\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]
\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]
` ∫ 1/ {1+ cos 3x} ` dx
\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
` ∫ cos mx cos nx dx `
Integrate the following integrals:
\[\int\text { sin x cos 2x sin 3x dx}\]
\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]
\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]
\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]
\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]
\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]
\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]
\[\int\frac{x}{x^4 - x^2 + 1} dx\]
` ∫ \sqrt{"cosec x"- 1} dx `
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]
\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx }\]
\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{ dx }\]
\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]
\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]
\[\int \cot^5 x\ dx\]
\[\int \sec^6 x\ dx\]
\[\int \left( \sin^{- 1} x \right)^3 dx\]
\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]