Advertisements
Advertisements
प्रश्न
\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]
योग
उत्तर
` Note:" Here, we are considering "log x as log_e x `
\[\text{Let I} = \int\frac{1 + \cot x}{x + \log \sin x}dx\]
\[\text{Putting}\ x + \log \ sin\ x = t\]
\[ \Rightarrow 1 + \ cot\ x = \frac{dt}{dx}\]
\[ \Rightarrow \left( 1 + \cot x \right)dx = dt\]
\[ \therefore I = \int\frac{1}{t}dt\]
\[ = \text{log} \left| t \right| + C\]
\[ = \text{log }\left| x + \log \sin\ x \right| + C \left[ \because t = x + \log \sin x \right]\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int \cos^{- 1} \left( \sin x \right) dx\]
\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]
\[\int\frac{\cos x}{1 + \cos x} dx\]
\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]
\[\int \tan^2 \left( 2x - 3 \right) dx\]
\[\int\frac{x^2 + x + 5}{3x + 2} dx\]
` ∫ cos mx cos nx dx `
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
\[\int\frac{\sec^2 x}{\tan x + 2} dx\]
\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]
\[\int2x \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]
\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
\[\int\frac{e^{2x}}{1 + e^x} dx\]
\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
` ∫ tan^5 x sec ^4 x dx `
Evaluate the following integrals:
\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]
\[\int\frac{1}{a^2 x^2 + b^2} dx\]
\[\int\frac{1}{x^2 + 6x + 13} dx\]
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
\[\int x e^x \text{ dx }\]
\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]
\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]
\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]
\[\int\frac{1}{x^4 - 1} dx\]
\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\]
\[\int \cot^5 x\ dx\]
\[\int\frac{1}{1 - x - 4 x^2}\text{ dx }\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int\sqrt{a^2 - x^2}\text{ dx }\]
\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]
\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]