हिंदी

∫ 1 X 4 − 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{x^4 - 1} dx\]
योग

उत्तर

We have,
\[I = \int\frac{dx}{x^4 - 1}\]
\[ = \int\frac{dx}{\left( x^2 - 1 \right) \left( x^2 + 1 \right)}\]
\[ = \int\frac{dx}{\left( x - 1 \right) \left( x + 1 \right) \left( x^2 + 1 \right)}\]
\[\text{Let }\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{Cx + D}{x^2 + 1}\]
\[ \Rightarrow \frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{A\left( x^2 + 1 \right) \left( x + 1 \right) + B\left( x - 1 \right) \left( x^2 + 1 \right) \left( Cx + D \right) \left( x - 1 \right) \left( x + 1 \right)}{\left( x - 1 \right) \left( x + 1 \right) \left( x^2 + 1 \right)}\]
\[ \Rightarrow 1 = A\left( x^2 + 1 \right) \left( x + 1 \right) + B \left( x - 1 \right) \left( x^2 + 1 \right) + \left( Cx + D \right) \left( x^2 - 1 \right)\]
\[ \Rightarrow 1 = A\left( x^3 + x^2 + x + 1 \right) + B\left( x^3 + x - x^2 - 1 \right) + \left( C x^3 - Cx + D x^2 - D \right)\]
\[ \Rightarrow 1 = \left( A + B + C \right) x^3 + x^2 \left( A - B + D \right) + x\left( A + B - C \right) + A - B - D\]
\[\text{Equating the coefficients of like terms} . \]
\[A + B + C = 0 . . . . . \left( 1 \right)\]
\[A - B + D = 0 . . . . . \left( 2 \right)\]
\[A + B - C = 0 . . . . . \left( 3 \right)\]
\[A - B - D = 1 . . . . . \left( 4 \right)\]
\[\text{Solving these four equations we get}\]
\[A = \frac{1}{4}, B = - \frac{1}{4}, C = 0, D = - \frac{1}{2}\]
\[ \therefore \frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{1}{4\left( x - 1 \right)} - \frac{1}{4\left( x + 1 \right)} - \frac{1}{2\left( x^2 + 1 \right)}\]
\[ \Rightarrow I = \frac{1}{4}\int \frac{dx}{x - 1} - \frac{1}{4}\int\frac{dx}{x + 1} - \frac{1}{2}\int\frac{dx}{x^2 + 1}\]
\[ = \frac{1}{4}\log \left( x - 1 \right) - \frac{1}{4}\log \left( x + 1 \right) - \frac{1}{2} \tan^{- 1} \left( x \right) + C'\]
\[ = \frac{1}{4}\log \left| \frac{x - 1}{x + 1} \right| - \frac{1}{2} \tan^{- 1} \left( x \right) + C'\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 55 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int \sin^4 2x\ dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×