हिंदी

∫ 1 + Sin X Sin X ( 1 + Cos X ) Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]

योग

उत्तर

\[\text{ Let I } = \int\frac{\left( 1 + \sin x \right)}{\sin x \left( 1 + \cos x \right)}dx\]
\[\text{ Putting   sin x } = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\text{ and }\text{ cos x }= \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \therefore I = \int\frac{\left( 1 + \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)}{\frac{\left( 2 \tan \frac{x}{2} \right)}{\left( 1 + \tan^2 \frac{x}{2} \right)} \left( 1 + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)}dx\]
\[ = \int\frac{\left( 1 + \tan^2 \frac{x}{2} + 2 \tan \frac{x}{2} \right) \left( 1 + \tan^2 \frac{x}{2} \right)}{\left( 2 \tan \frac{x}{2} \right) \left( 1 + \tan^2 \frac{x}{2} + 1 - \tan^2 \frac{x}{2} \right)}dx\]
\[ = \frac{1}{4}\int\frac{\left( 1 + \tan^2 \frac{x}{2} + 2 \tan \frac{x}{2} \right) \sec^2 \frac{x}{2}}{\tan \frac{x}{2}} \text{ dx}\]
\[\text{ Putting tan} \frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \left( \frac{x}{2} \right) \text{ dx} = dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right) \text{ dx } = 2dt\]
\[ \therefore I = \frac{1}{4}\int\frac{\left( 1 + t^2 + 2t \right) \cdot \left( \text{ 2  dt} \right)}{t}\]
\[ = \frac{1}{2}\int\left( \frac{1}{t} + t + 2 \right) dt\]
\[ = \frac{1}{2} \left[ \text{ ln  }\left| t \right| + \frac{t^2}{2} + 2t \right] + C\]
\[ = \frac{1}{2} \left[ \text{ ln } \left| \text{ tan} \frac{x}{2} \right| + \frac{\tan^2 \left( \frac{x}{2} \right)}{2} + 2 \tan \left( \frac{x}{2} \right) \right] + C....... \left[ \because t = \tan \frac{x}{2} \right]\]
\[ = \frac{1}{2} \text{ ln } \left| \text{ tan  }\frac{x}{2} \right| + \frac{1}{4} \tan^2 \frac{x}{2} + \tan\frac{x}{2} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 72 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int x \cos^2 x\ dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×