हिंदी

∫ 1 Sin X + Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sin x + \sin 2x} dx\]
योग

उत्तर

We have,
\[I = \int\frac{dx}{\sin x + \sin 2x}\]
\[ = \int\frac{dx}{\sin x + 2 \sin x \cos x}\]
\[ = \int\frac{dx}{\sin x \left( 1 + 2 \cos x \right)}\]
\[ = \int\frac{\sin x dx}{\sin^2 x \left( 1 + 2 \cos x \right)}\]
\[ = \int\frac{\sin x dx}{\left( 1 - \cos^2 x \right) \left( 1 + 2 \cos x \right)}\]
\[ = \int\frac{\sin x dx}{\left( 1 - \cos x \right) \left( 1 + \cos x \right) \left( 1 + 2 \cos x \right)}\]
\[\text{Putting }\cos x = t\]
\[ \Rightarrow - \sin x dx = dt\]
\[ \Rightarrow \sin x dx = - dt\]
\[ \therefore I = \int\frac{- dt}{\left( 1 - t \right) \left( 1 + t \right) \left( 1 + 2t \right)}\]
\[ = \int\frac{dt}{\left( t - 1 \right) \left( t + 1 \right) \left( 1 + 2t \right)}\]
\[\text{Let }\frac{1}{\left( t - 1 \right) \left( t + 1 \right) \left( 1 + 2t \right)} = \frac{A}{t - 1} + \frac{B}{t + 1} + \frac{C}{1 + 2t}\]
\[ \Rightarrow \frac{1}{\left( t - 1 \right) \left( t + 1 \right) \left( 1 + 2t \right)} = \frac{A \left( t + 1 \right) \left( 1 + 2t \right) + B \left( t - 1 \right) \left( 1 + 2t \right) + C \left( t - 1 \right) \left( t + 1 \right)}{\left( t - 1 \right) \left( t + 1 \right) \left( 1 + 2t \right)}\]
\[ \Rightarrow 1 = A \left( t + 1 \right) \left( 1 + 2t \right) + B \left( t - 1 \right) \left( 1 + 2t \right) + C \left( t - 1 \right) \left( t + 1 \right)\]
\[\text{Putting t + 1 = 0}\]
\[ \Rightarrow t = - 1\]
\[1 = B \left( - 1 - 1 \right) \left( 1 - 2 \right)\]
\[ \Rightarrow 1 = B \left( - 2 \right) \left( - 1 \right)\]
\[ \Rightarrow B = \frac{1}{2}\]
\[\text{Putting t - 1 = 0}\]
\[ \Rightarrow t = 1\]
\[1 = A \left( 1 + 1 \right) \left( 1 + 2 \right)\]
\[ \Rightarrow 1 = A\left( 2 \right)\left( 3 \right)\]
\[ \Rightarrow A = \frac{1}{6}\]
\[\text{Putting 1 + 2t = 0}\]
\[t = - \frac{1}{2}\]
\[ \Rightarrow 1 = A \times 0 + B \times 0 + C \left( - \frac{1}{2} - 1 \right) \left( - \frac{1}{2} + 1 \right)\]
\[1 = C \left( - \frac{3}{2} \right) \left( \frac{1}{2} \right)\]
\[C = - \frac{4}{3}\]
Then,
\[I = \frac{1}{6}\int\frac{dt}{t - 1} + \frac{1}{2}\int\frac{dt}{t + 1} - \frac{4}{3}\int\frac{dt}{1 + 2t}\]
\[ = \frac{1}{6} \log \left| t - 1 \right| + \frac{1}{2} \log \left| t + 1 \right| - \frac{4}{3} \times \frac{\log \left| 1 + 2t \right|}{2} + C\]
\[ = \frac{1}{6} \log \left| t - 1 \right| + \frac{1}{2} \log \left| t + 1 \right| - \frac{2}{3}\log \left| 1 + 2t \right| + C\]
\[ = \frac{1}{6} \log \left| \cos x - 1 \right| + \frac{1}{2} \log \left| \cos x + 1 \right| - \frac{2}{3} \log \left| 1 + 2 \cos x \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 61 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int x^3 \cos x^2 dx\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int \sin^4 2x\ dx\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{\log x}{x^3} \text{ dx }\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×