हिंदी

∫ 1 ( X + 1 ) √ X 2 + X + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
योग

उत्तर

\[\text{ We  have,} \]
\[I = \int \frac{dx}{\left( x + 1 \right) \sqrt{x^2 + x + 1}}\]
\[\text{ Putting  x }+ 1 = \frac{1}{t}\]
\[ \Rightarrow dx = - \frac{1}{t^2}dt\]
\[ \therefore I = \int \frac{- \frac{1}{t^2}dt}{\frac{1}{t}\sqrt{\left( \frac{1}{t}, - , 1 \right)^2 + - 1 + 1\frac{1}{t}}}\]
\[ = \int \frac{- \frac{1}{t^2}dt}{\frac{1}{t}\sqrt{\frac{1}{t^2} - + 1 + \frac{2}{t}\frac{1}{t}}}\]
\[ = \int \frac{- \frac{1}{t}dt}{\frac{\sqrt{t^2 + t - 2t + 1}}{t}}\]
\[ = - \int \frac{dt}{\sqrt{t^2 - t + 1}}\]
\[ = - \int\frac{dt}{\sqrt{t^2 - t + \frac{1}{4} - \frac{1}{4} + 1}}\]
\[ = - \int\frac{dt}{\sqrt{\left( t - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}}\]
\[ = - \text{ log }\left| t - \frac{1}{2} + \sqrt{\left( t - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \right| + C\]
\[ = - \text{ log }\left| t - \frac{1}{2} + \sqrt{t^2 - t + 1} \right| + C\]
\[ = - \text{ log }\left| \frac{1}{x + 1} - \frac{1}{2} + \sqrt{\frac{1}{\left( x + 1 \right)^2} - \frac{1}{x + 1} + 1} \right| + C\]
\[ = - \text{ log }\left| \frac{1}{x + 1} - \frac{1}{2} + \frac{\sqrt{\left( x + 1 \right)^2 - \left( x + 1 \right) + 1}}{x + 1} \right| + C\]
\[ = - \text{ log }\left| \frac{1}{x + 1} - \frac{1}{2} + \frac{\sqrt{x^2 + x + 1}}{x + 1} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.32 [पृष्ठ १९६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.32 | Q 9 | पृष्ठ १९६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

`int 1/(cos x - sin x)dx`

\[\int x \cos x\ dx\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int {cosec}^3 x\ dx\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×