Advertisements
Advertisements
प्रश्न
विकल्प
loge (x + sin x) + C
loge (sin x + cos x) + C
\[2 \sec^2 \frac{x}{2} + C\]
\[\frac{1}{2}\] [x + log (sin x + cos x)] + C
उत्तर
\[\frac{1}{2}\] [x + ln (sin x + cos x)] + C
\[\text{Let }I = \int\frac{1}{1 + \tan x}dx\]
\[ = \int\frac{1}{1 + \frac{\sin x}{\cos x}}dx\]
\[ = \int\frac{\cos x}{\cos x + \sin x}dx\]
\[ = \frac{1}{2}\int\frac{2 \cos x}{\cos x + \sin x}dx\]
\[ = \frac{1}{2}\int\left[ \frac{\left( \cos x + \sin x \right) + \left( \cos x - \sin x \right)}{\left( \cos x + \sin x \right)} \right]dx\]
\[ = \frac{1}{2}\int\left( \frac{\cos x + \sin x}{\cos x + \sin x} \right)dx + \frac{1}{2}\int\left( \frac{\cos x - \sin x}{\cos x + \sin x} \right)dx\]
\[ = \frac{1}{2}\int dx + \frac{1}{2}\int\left( \frac{\cos x - \sin x}{\cos x + \sin x} \right)dx\]
\[\text{Putting }\sin x + \cos x = t\]
\[ \Rightarrow \left( \cos x - \sin x \right) dx = dt\]
\[ \therefore I = \frac{1}{2}\int dx + \frac{1}{2}\int\frac{dt}{t}\]
\[ = \frac{x}{2} + \frac{1}{2}\ln \left| t \right| + C\]
\[ = \frac{x}{2} + \frac{1}{2} \ln \left| \cos x + \sin x \right| + C .............\left( \because t = \sin x + \cos x \right)\]
\[ = \frac{1}{2}\left[ x + \ln \left( \sin x + \cos x \right) \right] + C\]
Notes
Generally here book is taking loge x as log x . So we are writing ln x or loge xinstead log x only .
APPEARS IN
संबंधित प्रश्न
` = ∫1/{sin^3 x cos^ 2x} dx`
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
\[\int\sin x \sin 2x \text{ sin 3x dx }\]