हिंदी

∫ 1 1 + Tan X D X = - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{1 + \tan x} dx =\]

विकल्प

  • loge (x + sin x) + C

  • loge (sin x + cos x) + C

  • \[2 \sec^2 \frac{x}{2} + C\]

  • \[\frac{1}{2}\] [x + log (sin x + cos x)] + C

MCQ

उत्तर

\[\frac{1}{2}\]  [x + ln (sin x + cos x)] + C

 

\[\text{Let }I = \int\frac{1}{1 + \tan x}dx\]
\[ = \int\frac{1}{1 + \frac{\sin x}{\cos x}}dx\]
\[ = \int\frac{\cos x}{\cos x + \sin x}dx\]
\[ = \frac{1}{2}\int\frac{2 \cos x}{\cos x + \sin x}dx\]
\[ = \frac{1}{2}\int\left[ \frac{\left( \cos x + \sin x \right) + \left( \cos x - \sin x \right)}{\left( \cos x + \sin x \right)} \right]dx\]
\[ = \frac{1}{2}\int\left( \frac{\cos x + \sin x}{\cos x + \sin x} \right)dx + \frac{1}{2}\int\left( \frac{\cos x - \sin x}{\cos x + \sin x} \right)dx\]
\[ = \frac{1}{2}\int dx + \frac{1}{2}\int\left( \frac{\cos x - \sin x}{\cos x + \sin x} \right)dx\]
\[\text{Putting }\sin x + \cos x = t\]
\[ \Rightarrow \left( \cos x - \sin x \right) dx = dt\]
\[ \therefore I = \frac{1}{2}\int dx + \frac{1}{2}\int\frac{dt}{t}\]
\[ = \frac{x}{2} + \frac{1}{2}\ln \left| t \right| + C\]
\[ = \frac{x}{2} + \frac{1}{2} \ln \left| \cos x + \sin x \right| + C .............\left( \because t = \sin x + \cos x \right)\]
\[ = \frac{1}{2}\left[ x + \ln \left( \sin x + \cos x \right) \right] + C\]

shaalaa.com

Notes

Generally here book is taking loge x  as log x . So we are writing ln x or loge xinstead log only .

  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - MCQ [पृष्ठ २००]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
MCQ | Q 11 | पृष्ठ २००

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int x \sin^3 x\ dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int \cot^4 x\ dx\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×