हिंदी

If ∫ 1 5 + 4 Sin X D X = a Tan − 1 ( B Tan X 2 + 4 3 ) + C , Then (A) a = 2 3 , B = 5 3 (B) a = 1 3 , B = 2 3 (C) a = − 2 3 , B = 5 3 (D) a = 1 3 , B = − 5 3 - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then

विकल्प

  •  A =\[\frac{2}{3}\], B =\[\frac{5}{3}\]

  •  A =\[\frac{1}{3}\], B = \[\frac{2}{3}\]

  •  A =\[- \frac{2}{3}\], B =\[\frac{5}{3}\]

  • A =\[\frac{1}{3}\], B =\[- \frac{5}{3}\]

MCQ

उत्तर

A =\[\frac{2}{3}\] , B =\[\frac{5}{3}\]

\[\int\frac{1}{5 + 4 \sin x}dx =\text{ A  }\tan^{- 1} \left( \text{ B} \tan \frac{x}{2} + \frac{4}{3} \right) + C . . . . (1)\]
\[\text{Considering the LHS of eq} \text{ (1)}\]
\[\text{ Putting  sin x }= \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \Rightarrow \int\frac{1}{5 + \frac{8 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ \Rightarrow \int\frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{5 \left( 1 + \tan^2 \frac{x}{2} \right) + 8 \tan \frac{x}{2}}\text{ dx }\]
\[ \Rightarrow \int\frac{\sec^2 \frac{x}{2}}{5 \tan^2 \frac{x}{2} + 8 \tan \frac{x}{2} + 5}\text{  dx }. . . (2) \]
\[\text{ Let tan }\frac{x}{2} = t\]
\[ \Rightarrow \sec^2 \frac{x}{2} \times \frac{1}{2} \text{ dx }= dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right)\text{  dx }= 2dt\]
\[ \therefore \text{ Putting  tan} \frac{x}{2} = \text{ t  and }\sec^2 \left( \frac{x}{2} \right) dx = \text{ 2dt we get, }\]
\[\int\frac{2dt}{5 t^2 + 8t + 5}\]
\[ \Rightarrow \frac{2}{5}\int\frac{dt}{t^2 + \frac{8}{5}t + 1}\]
\[ \Rightarrow \frac{2}{5}\int\frac{dt}{t^2 + \frac{8}{5}t + \left( \frac{4}{5} \right)^2 - \left( \frac{4}{5} \right)^2 + 1}\]
\[ \Rightarrow \frac{2}{5}\int\frac{dt}{\left( t + \frac{4}{5} \right)^2 + 1 - \frac{16}{25}}\]
\[ \Rightarrow \frac{2}{5}\int\frac{dt}{\left( t + \frac{4}{5} \right)^2 + \left( \frac{3}{5} \right)^2}\]
\[ \Rightarrow \frac{2}{5} \times \frac{5}{3} \tan^{- 1} \left( \frac{t + \frac{4}{5}}{\frac{3}{5}} \right) + C\]
\[ \Rightarrow \frac{2}{3} \text{ tan}^{- 1} \left( \frac{5t + 4}{3} \right) + C\]
\[ \Rightarrow \frac{2}{3} \text{ tan}^{- 1} \left( \frac{5}{3} \tan \frac{x}{2} + \frac{4}{3} \right) + C \left( \because t = \text{ tan} \frac{x}{2} \right) . . . (3)\]

\[\text{ Comparing eq (3) with the RHS of eq (1) we get ,} \]
\[ \therefore A = \frac{2}{3}, B = \frac{5}{3}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - MCQ [पृष्ठ २००]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
MCQ | Q 4 | पृष्ठ २००

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int \sec^4 2x \text{ dx }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×