हिंदी

∫ Log 10 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \log_{10} x\ dx\]
योग

उत्तर

\[\int \log_{10} x\ dx\]
\[ = \int\frac{\log_e x}{\log_e 10} dx\]
\[ = \frac{1}{\log_e 10}\int 1_{II} \cdot \log_I x \text{ dx}\]
\[ = \frac{1}{\log_e 10}\left[ \log_e x\int1 \text{ dx} - \int\left\{ \frac{d}{dx}\left( \log_e x \right)\int1 \text{ dx} \right\}\text{ dx}\right]\]
\[ = \frac{1}{\log_e 10}\left[ \log_e x \cdot x - \int\frac{1}{x} \times x \text{ dx} \right]\]
\[ = \frac{1}{\log_e 10}\left[ x \log_e x - x \right] + C\]
\[ = \frac{1}{\log_e 10} \times x \left( \log_e x - 1 \right) + C\]
\[ = x \left( \log_e x - 1 \right) \cdot \log_{10} e + C\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 92 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×