हिंदी

∫ 1 √ X + 4 √ X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]
योग

उत्तर

\[\text{ Let  I } = \int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]
\[ \text{ Let  x }= t^4 \]
\[ \text{On differentiating both sides, we get}\]
\[ dx = 4 t^3 dt\]
\[ \therefore I = \int\frac{4 t^3}{\sqrt{t^4} + \sqrt[4]{t^4}}dt\]
\[ = \int\frac{4 t^3}{t^2 + t}dt\]
\[ = 4\int\frac{t^2}{t + 1}dt\]


\[ = 4\int\frac{\left( t - 1 \right)\left( t + 1 \right) + 1}{t + 1}dt\]
\[ = 4\int\left[ \left( t - 1 \right) + \frac{1}{t + 1} \right]dt\]
\[ = 4\left[ \frac{t^2}{2} - t + \log\left( t + 1 \right) \right] + c\]
\[ = 2\sqrt{x} - 4\sqrt[4]{x} + 4 \log\left( \sqrt[4]{x} + 1 \right) + c\]
\[Hence, \int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx = 2\sqrt{x} - 4\sqrt[4]{x} + 4 \log\left( \sqrt[4]{x} + 1 \right) + c\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.10 [पृष्ठ ६५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.10 | Q 9 | पृष्ठ ६५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int \sin^2\text{ b x dx}\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int \cos^7 x \text{ dx  } \]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


`int"x"^"n"."log"  "x"  "dx"`

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int \tan^3 x\ dx\]

\[\int \cot^4 x\ dx\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int x \sec^2 2x\ dx\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×