Advertisements
Advertisements
प्रश्न
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
योग
उत्तर
\[\int\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right)dx = 3 \frac{x^\frac{1}{2} + 1}{\frac{1}{2} + 1} + \frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} + c\]
\[ = 2 x^\frac{3}{2} + 2 x^\frac{1}{2} + c\]
\[ = 2\left( x^\frac{3}{2} + x^\frac{1}{2} \right) + c\]
\[\text{ Hence , the anti - derivative of }\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) \text{ is 2}\left( x^\frac{3}{2} + x^\frac{1}{2} \right) + c .\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]
\[\int\frac{x^6 + 1}{x^2 + 1} dx\]
\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]
\[\int\frac{1}{1 + \cos 2x} dx\]
\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]
\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]
` ∫ cos 3x cos 4x` dx
\[\int\text{sin mx }\text{cos nx dx m }\neq n\]
\[\int\frac{\cos x}{2 + 3 \sin x} dx\]
\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]
\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]
\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]
\[\int \cot^6 x \text{ dx }\]
\[\int \sin^3 x \cos^6 x \text{ dx }\]
\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
Evaluate the following integrals:
\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]
\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]
\[\int\frac{1}{x^2 - 10x + 34} dx\]
\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]
\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]
`int 1/(cos x - sin x)dx`
\[\int\cos\sqrt{x}\ dx\]
\[\int {cosec}^3 x\ dx\]
\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]
\[\int\frac{x^3 - 1}{x^3 + x} dx\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{1 - x^4}dx\]
\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to
\[\int\frac{1}{1 - \cos x - \sin x} dx =\]
\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]
\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]